Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ERG1A K channel, which is partially responsible for repolarization of the cardiac action potential, has also been reported in skeletal muscle where it modulates ubiquitin proteolysis. Because ERG1A protein appears variably expressed in muscles composed of mixed fiber types, we hypothesized that its abundance in skeletal muscle might differ with fiber type. Indeed, skeletal muscle fibers vary in speed of contraction (fast or slow), which is mainly determined by myosin heavy chain (MyHC) isoform content, but a sarcolemmal K channel might also modulate contraction speed. To test our hypothesis, we cryo-sectioned (SOL), (EDL), and muscles from five rats. These muscles were chosen because the SOL and EDL contain an abundance of slow- and fast-twitch fibers, respectively, while the has a more heterogeneous composition. The muscle sections were co-immunostained for the ERG1A protein and either the fast- or slow-twitch MyHC to identify fiber type. ERG1A fluorescence was then measured in the sarcolemma of each fiber type and compared. The data reveal that the ERG1A protein is more abundant in the fibers of the SOL than in the EDL muscles, suggesting ERG1A may be more abundant in the slow than the fast fibers, and this was confirmed with immunoblot. However, because of the homogeneity of fiber type within these muscles, it was not possible to get enough data from both fiber types within a single muscle to compare ERG1A composition within fiber type. However, immunohistochemistry of sections from the fiber type heterogeneous muscle reveals that slow fibers had, on average, a 17.2% greater ERG1A fluorescence intensity than fast fibers (p<0.03). Further, immunoblot reveals that ERG1A protein is 41.6% more abundant (p=0.051) in old than in young rat muscle. We postulate that this membrane bound voltage-gated channel may affect membrane characteristics, the duration of the action potential generated, and/or the speed of contraction. Indeed, ERG1A protein is more abundant in aged and atrophic skeletal muscle, both of which exhibit slower rates of contraction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767934 | PMC |
http://dx.doi.org/10.4081/ejtm.2019.8402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!