Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Controlled growth of crosslinked polyamide (PA) thin films is demonstrated at the interface of a monomer-soaked hydrogel and an organic solution of the complementary monomer. Termed gel-liquid interfacial polymerization (GLIP), the resulting PA films are measured to be chemically and mechanically analogous to the active layer in thin film composite membranes. PA thin films are prepared using the GLIP process on both a morphologically homogeneous hydrogel prepared from poly(2-hydroxyethylmethacrylate) (PHEMA) and a phase-separated, heterogeneous hydrogel prepared from poly(acrylamide) (PAAm). Two monomer systems are examined: trimesoyl chloride (TMC) reacting with m-phenylene diamine (MPD) and TMC reacting with piperazine (PIP). Unlike the self-limiting growth behavior in TFC membrane fabrication, diffusion-limited, continuous growth of the PA films is observed, where both the thickness and roughness of the PA layers increase with reaction time. A key morphological difference is found between the two monomer systems using the GLIP process: TMC/MPD produces a ridge-and-valley surface morphology whereas TMC/PIP produces nodule/granular structures. The GLIP process represents a unique opportunity to not only explore the pore characteristics (size, spacing, and continuity) on the resulting structure and morphology of interfacially polymerized thin films, but also a method to modify the surface of (or encapsulate) hydrogels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774368 | PMC |
http://dx.doi.org/10.1002/macp.201900100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!