This paper describes our on-going work to accelerate ZENO, a software tool based on Monte Carlo methods (MCMs), used for computing material properties at nanoscale. ZENO employs three main algorithms: (1) Walk on Spheres (WoS), (2) interior sampling, and (3) surface sampling. We have accelerated the first two algorithms. For the sake of brevity, the paper will discuss our work on the first one only as it is the most commonly used and the acceleration techniques were similar in both cases. WoS is a Brownian motion MCM for solving a class of partial differential equations (PDEs). It provides a stochastic solution to a PDE by estimating the probability that a random walk, which started at infinity, will hit the surface of the material under consideration. WoS is highly effective when the problem's geometry is additive, as this greatly reduces the number of walk steps needed to achieve accurate results. The walks start on the surface of an enclosing sphere and can make much larger jumps than in a direct simulation of Brownian motion. Our current implementation represents the molecular structure of nanomaterials as a union of possibly overlapping spheres. The core processing bottleneck in WoS is a Computational Geometry one, as the algorithm repeatedly determines the distance from query point to the material surface in each step of the random walk. In this paper, we present results from benchmarking spatial data structures, including several open-source implementations of -D trees, for accelerating WoS algorithmically. The paper also presents results from our multicore and cluster parallel implementation to show that it exhibits linear strong scaling with the number of cores and compute nodes; this implementation delivers up to 4 orders of magnitude speedup compared to the original FORTRAN code when run on 8 nodes (each with dual 6-core Intel Xeon CPUs) with 24 threads per node.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774381 | PMC |
http://dx.doi.org/10.1016/j.procs.2016.05.319 | DOI Listing |
Eur Phys J E Soft Matter
January 2025
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of hitchhiking in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Chan Zuckerberg Biohub-San Francisco, 499 Illinois Street, San Francisco, California 94158, USA.
Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
Soft Matter
January 2025
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA.
Photochem Photobiol
December 2024
Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil.
Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!