Spatial covariation of competing species in a fluctuating environment.

Ecology

Centre for Biodiversity Dynamics, Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway.

Published: January 2020

Understanding how stochastic fluctuations in the environment influence population dynamics is crucial for sustainable management of biological diversity. However, because species do not live in isolation, this requires knowledge of how species interactions influence population dynamics. In addition, spatial processes play an important role in shaping population dynamics. It is therefore important to improve our understanding of how these different factors act together to shape patterns of abundance across space within and among species. Here, we present a new analytical model for understanding patterns of covariation in space between interacting species in a stochastic environment. We show that the correlation between two species in how they experience the same environmental conditions determines how correlated fluctuations in their densities would be in the absence of competition. In other words, without competition, synchrony between the species is driven by the environment, similar to the Moran effect within a species. Competition between the two species causes their abundances to become less positively or more negatively correlated. The same strength of competition has a greater negative effect on the correlation between species when one of them has a more variable growth rate than the other. In addition, dispersal or other movement weakens the effect of competition on the interspecific correlation. Finally, we show that movement increases the distance over which the species are (positively or negatively) correlated, an effect that is stronger when the species are competitors, and that there is a close connection between the spatial scaling of population synchrony within a species and between species. Our results show that the relationships between the different factors influencing interspecific correlations in abundance are not simple linear ones, but this model allows us to disentangle them and predict how they will affect population fluctuations in different situations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2901DOI Listing

Publication Analysis

Top Keywords

species
14
population dynamics
12
influence population
8
correlation species
8
synchrony species
8
positively negatively
8
negatively correlated
8
population
5
competition
5
spatial covariation
4

Similar Publications

Mycoplasma (Class: Mollicutes) contamination in cell cultures is a universal concern for research laboratories. Some estimates report contamination in up to 35% of continuous cell lines. Various commercial antibiotic treatments can successfully decontaminate clean cell lines ; however, decontamination of bacterial cultures remains challenging.

View Article and Find Full Text PDF

Screening a library of temperature-sensitive mutants to identify secretion factors in .

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.

View Article and Find Full Text PDF

Omadacycline is a novel antimicrobial belonging to the tetracycline class. It has the ability to evade both efflux and ribosomal methylation types of resistance and therefore has an expanded spectrum compared to other tetracycline agents. Omadacycline is active against a number of multidrug-resistant bacteria, including macrolide and doxycycline-resistant methicillin-resistant (MRSA), vancomycin-resistant Enterococcus, and several enteric gram-negative bacilli.

View Article and Find Full Text PDF

Prolonged incubation time unwarranted for acute periprosthetic joint infections.

J Clin Microbiol

January 2025

Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Centre, Maastricht, the Netherlands.

Unlabelled: Current laboratory protocols for periprosthetic joint infections (PJIs) involve a standard 10- to 14-day incubation period. However, recent evidence indicates considerable variability in the time to diagnosis (TTD) between acute and chronic PJIs. TTD is also influenced by the employed culture media and sample types.

View Article and Find Full Text PDF

Autoinducer-2 enhances the defense of against oxidative stress and DNA damage by modulation of c-di-GMP signaling via a two-component system.

mBio

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.

As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!