DDR1 promotes breast tumor growth by suppressing antitumor immunity.

Oncol Rep

Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China.

Published: December 2019

Breast cancer is the second leading cause of cancer‑associated mortality among women worldwide. Triple‑negative breast cancer (TNBC) accounts for 15‑20% of all breast cancers and is defined by its aggressive nature and limited treatment options. Therefore, there is an urgent need to develop effective therapies for TNBC in order to improve breast cancer outcomes, as targeted therapies have done in other subtypes of breast cancer. Discoidin domain receptor tyrosine kinase 1 (DDR1) is activated by collagens, which are important components of the tumor stroma; therefore, DDR1 may serve a critical role in the communication between tumor cells and the tumor microenvironment. The aim of the present study was to determine how tumor DDR1 regulated tumor growth by affecting tumor infiltrated T cells. First, the DDR1 expression levels from a cohort of patients with breast cancer were analyzed. The results revealed that there were higher levels of DDR1 expression in tumor tissues compared with adjacent normal tissues. Overexpression of DDR1 in 4T1 cells promoted tumor growth in vivo, while knockout of DDR1 in EMT6 cells decreased tumor growth in vivo. In addition, it was revealed that DDR1 regulated tumor growth by modulating tumor infiltrating T cells, CD4+ and CD8+. Furthermore, inhibition of DDR1 by neutralizing antibodies decreased breast cancer growth in vivo. To the best of our knowledge, the results of the present study demonstrated for the first time that DDR1 expressed on the tumor cells promoted breast tumor growth by suppressing antitumor immunity. The present findings indicated that DDR1 may not only have a critical role in the progression of breast cancer, but may also serve as a potential therapeutic target for breast cancer, particularly TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2019.7338DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
tumor growth
24
tumor
14
ddr1
12
growth in vivo
12
breast
11
breast tumor
8
growth suppressing
8
suppressing antitumor
8
antitumor immunity
8

Similar Publications

Background: One-stage direct-to-implant (DTI) breast reconstruction is increasingly popular with the use of prepectoral reconstruction leading to increased demand for structural scaffolds. It is vital to determine if differences in safety profiles exist among scaffolds.

Methods: We performed a retrospective cohort study of consecutive patients in our breast cancer center undergoing DTI reconstruction.

View Article and Find Full Text PDF

Boosting Natural Killer Cells' Immunotherapy with Amoxicillin-Loaded Liposomes.

Mol Pharm

January 2025

State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells.

View Article and Find Full Text PDF

Triethylamine-mediated protonation-deprotonation unlocks dual-drug self assembly to suppress breast cancer progression and metastasis.

Proc Natl Acad Sci U S A

February 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.

Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.

View Article and Find Full Text PDF

Learning Objectives: After studying this article, the participant should be able to: (1) Understand the unique differences between mastopexy in aesthetic and reconstructive breast surgery. (2) Describe the approach to performing mastopexy with autoaugmentation or after explantation. (3) Have insight into the approach and decision-making process for performing mastopexy with nipple-sparing mastectomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!