(Macro-)autophagy is a compartmental degradation pathway conserved from yeast to mammals. The yeast protein Atg8 mediates membrane tethering/hemifusion and cargo recruitment and is essential for autophagy. The human MAP1LC3/GABARAP family proteins show high sequence identity with Atg8, but MAP1LC3C is distinguished by a conspicuous amino-terminal extension with unknown functional significance. We have determined the high-resolution three-dimensional structure and measured the backbone dynamics of MAP1LC3C by NMR spectroscopy. From Ser18 to Ala120, MAP1LC3C forms an α-helix followed by the ubiquitin-like tertiary fold with two hydrophobic binding pockets used by MAP1LC3/GABARAP proteins to recognize targets presenting LC3-interacting regions (LIRs). Unlike other MAP1LC3/GABARAP proteins, the amino-terminal region of MAP1LC3C does not form a stable helix α but a "sticky arm" consisting of a polyproline II motif on a flexible linker. Ser18 at the interface between this linker and the structural core can be phosphorylated in vitro by protein kinase A, which causes additional conformational heterogeneity as monitored by NMR spectroscopy and molecular dynamics simulations, including changes in the LIR-binding interface. Based on these results we propose that the amino-terminal polyproline II motif mediates specific interactions with the microtubule cytoskeleton and that Ser18 phosphorylation modulates the interplay of MAP1LC3C with its various target proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775092 | PMC |
http://dx.doi.org/10.1038/s41598-019-48155-8 | DOI Listing |
Immunol Rev
January 2025
Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
Rather than being contained in a single polypeptide, and unlike receptor tyrosine kinases, the T cell receptor (TCR) divides its signaling functions among its subunits: TCRα/β bind the extracellular ligand, an antigenic peptide-MHC complex (pMHC), and the CD3 subunits (CD3γ, CD3δ, CD3ε, and CD3ζ) transmit this information to the cytoplasm. How information about the quality of pMHC binding outside is transmitted to the cytoplasm remains a matter of debate. In this review, we compile data generated using a wide variety of experimental systems indicating that TCR engagement by an appropriate pMHC triggers allosteric changes transmitted from the ligand-binding loops in the TCRα and TCRβ subunits to the cytoplasmic tails of the CD3 subunits.
View Article and Find Full Text PDFNat Commun
December 2024
Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
Polyproline sequences are deleterious to cells because they stall ribosomes. In bacteria, EF-P plays an important role in overcoming such polyproline sequence-induced ribosome stalling. Additionally, numerous bacteria possess an EF-P paralog called EfpL (also known as YeiP) of unknown function.
View Article and Find Full Text PDFPLoS Pathog
October 2024
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
Non-structural protein 2 (NSP2) of PRRSV is highly variable and plays crucial roles in the virus's life cycle. To elucidate the function of NSP2 during PRRSV infection, we identified SH3KBP1 as an NSP2-interacting host protein using mass spectrometry. Exogenous SH3KBP1 expression significantly inhibited PRRSV replication by enhancing IFN-I and related ISGs production.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Microbiology, Cornell University, Ithaca, NY 14853.
Polyproline motifs are essential structural features of many proteins, and recent evidence suggests that EF-P is one of several factors that facilitate their translation. For example, YfmR was recently identified as a protein that prevents ribosome stalling at proline-containing sequences in the absence of EF-P. Here, we show that the YebC-family protein YebC2 (formerly YeeI) functions as a translation factor in that resolves ribosome stalling at polyprolines.
View Article and Find Full Text PDFACS Synth Biol
November 2024
Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
Protein synthesis is influenced by the chemical and structural properties of the amino acids incorporated into the polypeptide chain. Motifs containing consecutive prolines can slow the translation speed and cause ribosome stalling. Translation elongation factor P (EF-P) facilitates peptide bond formation in these motifs, thereby alleviating stalled ribosomes and restoring the regular translational speed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!