The interactions between solute atoms and crystalline defects such as vacancies, dislocations, and grain boundaries are essential in determining alloy properties. Here we present a general linear correlation between two descriptors of local electronic structures and the solute-defect interaction energies in binary alloys of body-centered-cubic (bcc) refractory metals (such as W and Ta) with transition-metal substitutional solutes. One electronic descriptor is the bimodality of the d-orbital local density of states for a matrix atom at the substitutional site, and the other is related to the hybridization strength between the valance sp- and d-bands for the same matrix atom. For a particular pair of solute-matrix elements, this linear correlation is valid independent of types of defects and the locations of substitutional sites. These results provide the possibility to apply local electronic descriptors for quantitative and efficient predictions on the solute-defect interactions and defect properties in alloys.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775119 | PMC |
http://dx.doi.org/10.1038/s41467-019-12452-7 | DOI Listing |
Nano Converg
January 2025
Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.
The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.
View Article and Find Full Text PDFBMC Public Health
January 2025
School of Humanities and Management, Guilin Medical University, Guangxi, Guilin, 541199, China.
Background: As China's "Internet + Health" initiative advances, the digital economy significantly influences the quality of medical and health services. However, there is a research gap concerning the digital economy's specific impacts, mechanisms, and marginal effects on these services. This gap impedes a comprehensive understanding of the digital economy's potential in healthcare.
View Article and Find Full Text PDFEur Spine J
January 2025
Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Background: Giant sacral and presacral schwannomas are very rare conditions and their prevalence is estimated to account for only 0.3 to 3.3% of overall schwannomas.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.
View Article and Find Full Text PDFLight Sci Appl
January 2025
National and Local United Engineering Laboratory of Flat Panel Display Technology, College of Physics and Information Engineering, Fuzhou University, 350108, Fuzhou, China.
Multifunctional materials have attracted tremendous attention in intelligent and interactive devices. However, achieving multi-dimensional sensing capabilities with the same perovskite quantum dot (PQD) material is still in its infancy, with some considering it currently challenging and even unattainable. Drawing inspiration from neurons, a novel multifunctional CsPbBr/PDMS nanosphere is devised to sense humidity, temperature, and pressure simultaneously with unique interactive responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!