Baicalin Alleviates Age-Related Macular Degeneration via miR-223/NLRP3-Regulated Pyroptosis.

Pharmacology

Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,

Published: October 2020

Background: Age-related macular degeneration (AMD), a major eye degenerative disease, ultimately causes irreversible vision loss. Baicalin was identified to attenuate laser-induced chorodial neovascularization, indicating a therapeutic role in AMD. However, the exact mechanisms for baicalin in AMD remain unknown.

Methods: MTT assay was performed to access the suitable concentration of baicalin or Aβ for treating ARPE-19 cells. CCK-8, morphology, and flow cytometry analysis were performed to evaluate cell viability and pyroptosis of baicalin in Aβ-envoked ARPE-19 cells. Quantitative real-time polymerase chain reaction and western blot analysis were subjected to measure the correlation between miR-223 and NLRP3. Luciferase reporter assay was performed to determine their direct relationship. Western blot analysis was subjected to determine pyroptosis-related proteins.

Results: Baicalin inhibited Aβ-envoked pyroptosis in ARPE-19 cells. Mechanistically, baicalin significantly induced upregulation of miR-223 and downregulation of NLRP3, thus suppressing pyroptosis triggered by NLRP3 inflammasome signaling, yet such beneficial effects were reversed by miR-223 knockdown. Additionally, MCC950, a NLRP3 inhibitor, restored anti-pyroptosis activity of baicalin under miR-223 silencing.

Conclusion: Baicalin alleviates intracellular pyroptosis and viability damage resulted from Aβ inducement in human retinal pigment epithelium cells via negative crosstalk of miR-223/NLRP3 inflammasome signaling, indicating that baicalin may be considered as a potential candidate for AMD therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000502614DOI Listing

Publication Analysis

Top Keywords

arpe-19 cells
12
baicalin
10
baicalin alleviates
8
age-related macular
8
macular degeneration
8
assay performed
8
western blot
8
blot analysis
8
analysis subjected
8
inflammasome signaling
8

Similar Publications

The retinal pigment epithelium (RPE) contributes to retinal homeostasis, and its metabolic dysfunction is implied in the development of retinal degenerative disease. The isoform M2 of pyruvate kinase (PKM2) is a key factor in cell metabolism, and its function may be affected by insulin-like growth factor 1 (IGF-1). This study aims to investigate the effect of IGF-1 on PKM2 modulation of RPE cells and whether co-treatment with klotho may preserve it.

View Article and Find Full Text PDF

Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients' life standards are urgently needed.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess how the SUMOylation inhibitor TAK981 affects oxidative damage caused by hydrogen peroxide (H2O2) in human retinal pigment epithelial cells (ARPE-19) and its underlying mechanisms.
  • An oxidative damage model was created, and various concentrations of TAK981 were tested to see their impact on cell viability, levels of oxidative stress markers, and inflammatory cytokines, while comparing them to control and model groups.
  • Results showed that H2O2 reduced cell viability significantly, while TAK981 treatment improved cell survival and reduced oxidative damage and inflammation markers, indicating its potential protective effects against oxidative stress in ARPE-19 cells.
View Article and Find Full Text PDF

FADS1 inhibition protects retinal pigment epithelium cells from ferroptosis in age related macular degeneration.

Eur J Pharmacol

December 2024

Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China. Electronic address:

Purpose: Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly individuals. Retinal pigment epithelium (RPE) ferroptosis is a significant pathogenetic component in AMD. This study aims to elucidate the role and mechanisms of fatty acid desaturase 1 (FADS1) in ferroptosis as well as AMD progression.

View Article and Find Full Text PDF

Singlet Oxygen-Induced Mitochondrial Reset in Cancer: A Novel Approach for Ovarian Cancer Therapy.

Metabolites

November 2024

Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC H3C 3A7, Canada.

: This study explores the generation of singlet oxygen (SO) through methylene blue (MB) activation as a metabolic intervention for ovarian cancer. We aimed to examine the role of SO in modulating mitochondrial function, cellular metabolism, and proliferation in ovarian cancer cell lines compared to control cells. : The study utilized two ovarian cancer cell lines, OV1369-R2 and TOV1369, along with ARPE-19 control cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!