A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selectivity of afferent microstimulation at the DRG using epineural and penetrating electrode arrays. | LitMetric

Selectivity of afferent microstimulation at the DRG using epineural and penetrating electrode arrays.

J Neural Eng

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America. Rehabilitation Neural Engineering Laboratories, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213, United States of America. Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States of America.

Published: December 2019

AI Article Synopsis

  • Previous studies demonstrated that microstimulation of lumbar dorsal root ganglia (L5-L7 DRG) can selectively activate branches of the sciatic and femoral nerves, but using penetrating electrodes poses challenges for clinical application.
  • This study aimed to evaluate the effectiveness of epineural electrodes compared to penetrating electrodes in recruiting these nerve branches by measuring stimulation responses in cats.
  • Results showed that epineural electrodes were able to selectively activate a single nerve branch 67% of the time, while penetrating electrodes achieved 79%, though epineural stimulation required higher stimulus intensities and had a wider range.

Article Abstract

Objective: We have shown previously that microstimulation of the lumbar dorsal root ganglia (L5-L7 DRG) using penetrating microelectrodes, selectively recruits distal branches of the sciatic and femoral nerves in an acute preparation. However, a variety of challenges limit the clinical translatability of DRG microstimulation via penetrating electrodes. For clinical translation of a DRG somatosensory neural interface, electrodes placed on the epineural surface of the DRG may be a viable path forward. The goal of this study was to evaluate the recruitment properties of epineural electrodes and compare their performance with that of penetrating electrodes. Here, we compare the number of selectively recruited distal nerve branches and the threshold stimulus intensities between penetrating and epineural electrode arrays.

Approach: Antidromically propagating action potentials were recorded from multiple distal branches of the femoral and sciatic nerves in response to epineural stimulation on 11 ganglia in four cats to quantify the selectivity of DRG stimulation. Compound action potentials (CAPs) were recorded using nerve cuff electrodes implanted around up to nine distal branches of the femoral and sciatic nerve trunks. We also tested stimulation selectivity with penetrating microelectrode arrays implanted into ten ganglia in four cats. A binary search was carried out to identify the minimum stimulus intensity that evoked a response at any of the distal cuffs, as well as whether the threshold response selectively occurred in only a single distal nerve branch.

Main Results: Stimulation evoked activity in just a single peripheral nerve through 67% of epineural electrodes (35/52) and through 79% of the penetrating microelectrodes (240/308). The recruitment threshold (median  =  9.67 nC/phase) and dynamic range of epineural stimulation (median  =  1.01 nC/phase) were significantly higher than penetrating stimulation (0.90 nC/phase and 0.36 nC/phase, respectively). However, the pattern of peripheral nerves recruited for each DRG were similar for stimulation through epineural and penetrating electrodes.

Significance: Despite higher recruitment thresholds, epineural stimulation provides comparable selectivity and superior dynamic range to penetrating electrodes. These results suggest that it may be possible to achieve a highly selective neural interface with the DRG without penetrating the epineurium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131467PMC
http://dx.doi.org/10.1088/1741-2552/ab4a24DOI Listing

Publication Analysis

Top Keywords

distal branches
12
penetrating electrodes
12
epineural stimulation
12
penetrating
11
epineural
9
drg
8
epineural penetrating
8
drg penetrating
8
penetrating microelectrodes
8
neural interface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!