Heart failure (HF) leads to an increase in morbidity and mortality globally. Disorders of energy metabolism and apoptosis of cardiomyocytes are critically involved in the progression of HF. Ginsenoside Rb3 (G-Rb3) is a natural product derived from ginseng that has cardio-protective effect. The pharmacological mechanism of G-Rb3 in the treatment of HF remains to be clarified. In this study, we aimed to explore the regulative effects of G-Rb3 on fatty acids oxidation and apoptosis by in vivo and in vitro studies. Myocardial infarction (MI)-induced HF mice model and a cellular H9C2 injury model was induced by oxygen-glucose deprivation/reperfusion (OGD/R) stimulation. The results showed that G-Rb3 could protect heart functions in MI-induced HF model. G-Rb3 treatment up-regulated expressions of key enzymes involved in β-oxidation of fatty acids, including carnitine palmitoyltransterase-1α (CPT-1α), acyl-CoA dehydrogenase long chain (ACADL) and the major mitochondrial deacetylase enzyme sirtuin 3 (SIRT3). The upstream transcriptional regulator, peroxisome proliferator-activated receptor α (PPARα), was also up-regulated by G-Rb3 treatment. In vitro study demonstrated that G-Rb3 could protect mitochondrial membrane integrity and exert anti-apoptotic effects, in addition to regulating fatty acids oxidation. Impressively, after cells were co-treated with PPARα inhibitor, the regulative effects of G-Rb3 on energy metabolism and apoptosis were abrogated. Our study suggests that G-Rb3 is a promising agent and PPARα is potential target in the management of HF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2019.109487 | DOI Listing |
CNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFEClinicalMedicine
October 2024
Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada.
Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.
View Article and Find Full Text PDFFront Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.
Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.
View Article and Find Full Text PDFBackground: The activation of brown adipose tissue (BAT) is associated with improved metabolic health in humans. We previously identified the mitochondrial protein 4-Nitrophenylphosphatase Domain and Non-Neuronal SNAP25-Like 1 (Nipsnap1) as a novel regulatory factor that integrates with lipid metabolism and is critical to sustain the long-term activation of BAT, but the precise mechanism and function of Nipsnap1 is unknown.
Objectives: Define how the regulatory factor Nipsnap1 integrates with lipid metabolism.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!