This study aims to construct a neural network to predict weaning difficulty among planned extubation patients in intensive care units.This observational cohort study was conducted in eight adult ICUs in a medical center about adult patients experiencing planned extubation.The data of 3602 patients with planned extubation in ICUs of Chi-Mei Medical Center (from Dec. 2009 through Dec. 2011) was used to train and test an artificial neural network (ANN) model. The input features contain 47 clinical risk factors and the outputs are classified into three categories: simple, difficult, and prolonged weaning. A deep ANN model with four hidden layers of 30 neurons each was developed. The accuracy is 0.769 and the area under receiver operating characteristic curve for simple weaning, prolonged weaning, and difficult weaning are 0.910, 0.849, and 0.942 respectively.The results revealed that the ANN model achieved a good performance in prediction the weaning difficulty in planned extubation patients. Such a model will be helpful for predicting ICU patients' successful planned extubation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783239PMC
http://dx.doi.org/10.1097/MD.0000000000017392DOI Listing

Publication Analysis

Top Keywords

planned extubation
20
weaning difficulty
12
difficulty planned
12
extubation patients
12
neural network
12
ann model
12
artificial neural
8
medical center
8
prolonged weaning
8
planned
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!