Surface charge and charge transfer between nanoclusters and oxide supports are of paramount importance to catalysis, surface plasmonics, and optical energy harvesting areas. At present, high-energy X-rays and theoretical investigation are always required to determine the chemical state changes in the nanoclusters and the oxide supports, as well as the underlying transfer charge between them. This work presents the idea of using chrono-conductometric measurements to determine the chemical states of the Ru nanoclusters on CuO supports. Both icosahedral and single-crystal hexagonal close-packed Ru nanoclusters were deposited through gas-phase synthesis. To study the charge transfer phenomenon at the interface, a bias was applied to cupric oxide nanowires with metallic nanocluster decoration. conductometric measurements were performed to observe the evolution of Ru into RuO under heating conditions. Structural elucidation techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy were employed to study the corresponding progression of structure, chemical ordering, and surface potential, respectively, as Ru(0) was oxidized to RuO on the supporting oxide surface. Experimental and theoretical investigation of charge transfer between the nanocluster and oxide support highlighted the importance of metallic character and structure of the nanoclusters on the interfacial charge transfer, thus allowing the investigation of surface charge behavior on oxide-supported catalysts, , during catalytic operation conductometric measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b06224DOI Listing

Publication Analysis

Top Keywords

charge transfer
20
charge
8
study charge
8
transfer phenomenon
8
surface charge
8
nanoclusters oxide
8
oxide supports
8
theoretical investigation
8
determine chemical
8
conductometric measurements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!