In this article, the effect of a porous material's flexibility on the dynamic reversibility of a nonwetting liquid intrusion was explored experimentally. For this purpose, high-pressure water intrusion together with high-pressure in situ small-angle neutron scattering were applied for superhydrophobic grafted silica and two metal-organic frameworks (MOFs) with different flexibility [ZIF-8 and Cu(tebpz) (tebpz = 3,3',5,5'tetraethyl-4,4'-bipyrazolate)]. These results established the relation between the pressurization rate, water intrusion-extrusion hysteresis, and porous materials' flexibility. It was demonstrated that the dynamic hysteresis of water intrusion into superhydrophobic nanopores can be controlled by the flexibility of a porous material. This opens a new area of applications for flexible MOFs, namely, a smart pressure-transmitting fluid, capable of dissipating undesired vibrations depending on their frequency. Finally, nanotriboelectric experiments were conducted and the results showed that a porous material's topology is important for electricity generation while not affecting the dynamic hysteresis at any speed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b14031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!