Background: Type 1 diabetes mellitus is characterized by the destruction of insulin- producing Beta cells in the pancreas. Researchers hope that islet transplantation will help to patients with insulin-dependent diabetes mellitus (IDDM). Oxidative stress is the most important challenge that beta cells face to it after isolation, and mitochondrial dysfunction is a crucial mediator in beta cells death. Hence, therapeutic approaches can shift to antioxidants through the application of nanoparticles such as cerium and yttrium oxide nanoparticles (Cer and Ytt Ox NPs) and nano-selenium (Nan Se).
Objective: This study evaluates the effects of Cer and Ytt Ox NPs and Nan Se on H2O2- induced oxidative stress in pancreatic beta cells with focus on mitochondrial dysfunction pathway.
Methods: CRI-D2 beta-cell line were pretreated with Cer Ox NPs (200 µM) + Ytt Ox NPs (0.5 µg/mL) for 3 days and/or Nan Se (0.01 µM) for 1 day. Then markers of oxidative stress, mitochondrial dysfunction, insulin and glucagon secretion were measured.
Results: We reported a decrease in H2O2-induced reactive oxygen species (ROS) level and glucagon secretion, and an increase in H2O2-reduced ATP/ADP ratio, MMP, as well as UCP2 protein expression, and insulin secretion by pretreatment of CRI-D2 cells with Cer and Ytt Ox NPs and/or Nan Se.
Conclusion: We found maximum protective effect with Cer and Ytt Ox NPs on CRI-D2 beta-cell line exposed by H2O2 for keeping beta cells alive until transplant whereas combination of Cer and Ytt Ox NPs and Nan Se had very little protective effect in this condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/2211738507666191002154659 | DOI Listing |
Nat Commun
December 2024
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.
View Article and Find Full Text PDFNat Commun
December 2024
Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA.
Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.
View Article and Find Full Text PDFNat Commun
December 2024
College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, P. R. China.
Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.
View Article and Find Full Text PDFNat Commun
December 2024
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Guangzhou National Laboratory , Guangzhou, China.
β-coronavirus rearranges the host cellular membranes to form double-membrane vesicles (DMVs) via NSP3/4, which anchor replication-transcription complexes (RTCs), thereby constituting the replication organelles (ROs). However, the impact of specific domains within NSP3/4 on DMV formation and RO assembly remains largely unknown. By using cryogenic-correlated light and electron microscopy (cryo-CLEM), we discovered that the N-terminal and C-terminal domains (NTD and CTD) of SARS-CoV-2 NSP3 are essential for DMV formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!