A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dissecting the Antenna in Human Glutamate Dehydrogenase: Understanding Its Role in Subunit Communication and Allosteric Regulation. | LitMetric

Dissecting the Antenna in Human Glutamate Dehydrogenase: Understanding Its Role in Subunit Communication and Allosteric Regulation.

Biochemistry

Department of Biochemistry and Molecular Biology , University of Texas Medical Branch at Galveston , 301 University Boulevard, Route 0645 , Galveston , Texas 77555 , United States.

Published: October 2019

Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate. While GDH is found in all living organisms, only that from animals is highly allosterically regulated by a wide array of metabolites. Because only animal GDH has a 50-residue antenna domain, we hypothesized that it was critical for allostery. To this end, we previously replaced the antenna with the loop found in bacteria, and the resulting chimera was no longer regulated by purine nucleotides. Hence, it seemed logical that the purpose of the antenna is to exert the subunit communication necessary for heterotrophic allosteric regulation. Here, we revisit the antenna deletion studies by retaining 10 more of the human GDH (hGDH) residues without adding the bacterial loop. Unexpectedly, the results were profoundly different than before. The basal activity of the mutant is only ∼13% of that of the wild type but ∼100 times more sensitive to all allosteric activators. In contrast, the mutant is still affected by all of the tested inhibitors to approximately the same degree. The resulting antenna-less mutant retained its negative cooperativity with respect to the coenzyme, again suggesting that intersubunit communication is intact. Finally, the mutant still exhibits substrate inhibition, albeit there are differences in the details. We present a model in which the majority of the antenna is not directly involved in allosteric regulation per se but rather may be responsible for improving enzymatic efficiency by acting as a conduit for substrate binding energy between subunits.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.9b00722DOI Listing

Publication Analysis

Top Keywords

allosteric regulation
12
glutamate dehydrogenase
8
subunit communication
8
antenna
5
dissecting antenna
4
antenna human
4
human glutamate
4
dehydrogenase understanding
4
understanding role
4
role subunit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!