High-voltage lithium-ion cathode materials exhibit exceptional energy densities; however, rapid capacity fade during cell cycling prohibits their widespread utilization. Surface modification of cathode-active materials by organic self-assembled monolayers (SAMs) has emerged as an approach to improve the longevity of high-voltage electrodes; however, the surface chemistry at the electrode/electrolyte interphase and its dependence on monolayer structure remains unclear. Herein, we investigate the interplay between monolayer structure, electrochemical performance, and surface chemistry of high-voltage LiMnNiO (LMNO) electrodes by the application of silane-based SAMs of variable length and chemical composition. We demonstrate that the application of both hydrophobic and hydrophilic monolayers results in improved galvanostatic capacity retention relative to unmodified LMNO. The extent of this improvement is tied to the structure of the monolayer with fluorinated alkyl-silanes exhibiting the greatest overall capacity retention, above 96% after 100 charge/discharge cycles. Postmortem surface analysis reveals that the presence of the monolayer enhances the deposition of LiF at the electrode surface during cell cycling and that the total surface concentration correlates with the overall improvements in capacity retention. We propose that the enhanced deposition of highly insulating LiF increases the anodic stability of the interphase, contributing to the improved galvanostatic performance of modified electrodes. Moreover, this work demonstrates that the modification of the electrode surface by the selection of an appropriate monolayer is an effective approach to tune the properties and behavior of the electrode/electrolyte interphase formed during battery operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b12912 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
National University of Singapore, Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE.
Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.
The -doped biochar is recognized as a promising, cost-effective, and efficient material for CO adsorption. However, achieving efficient enrichment of -containing adsorption sites and improving their accessibility remains a bottleneck problem that restricts the adsorption performance of -doped biochar. Herein, a synthesis strategy for nitrogen-doped biochar by one-pot ionothermal treatment of biomass and zeolitic imidazolate framework (ZIF) precursors accompanied by pyrolysis is demonstrated.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Departamento de Agronomia e Ciências Florestais, Universidade Federal Rural do Semi-Árido, Mossoró, AV. Francisco Mota, 572 - Pres. Costa E Silva, Mossoró - RN, 59625-900, Rio Grande do Norte, Brazil. Electronic address:
Generally, herbicides used in Brazil follow manufacturer's recommendations, which often do not consider soil attributes. Statistical models that include the physicochemical properties of the soil involved in herbicide retention processes could enable greater precision in herbicide dose decision-making. This study evaluated the potential of artificial neural networks (ANNs) to predict the sorption and desorption of the herbicide linuron in Brazilian soils with different attributes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!