RNA polymerase II (RNAP II) non-coding transcription is now known to cover almost the entire eukaryotic genome, a phenomenon referred to as pervasive transcription. As a consequence, regions previously thought to be non-transcribed are subject to the passage of RNAP II and its associated proteins for histone modification. This is the case for the nucleosome-depleted regions (NDRs), which provide key sites of entry into the chromatin for proteins required for the initiation of coding gene transcription and DNA replication. In this review, recent data on the effects of pervasive transcription through NDRs are summarized and a model is proposed to explain how RNAP II-driven transcription is able to modify the nucleosomes flanking the NDRs, leading to nucleosome repositioning and NDR closure. Even though much of the mechanistic detail underlying these events remains to be elucidated, such a model provides a basis to explain how non-coding transcription through NDRs can regulate the initiation of coding gene expression and DNA replication.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bies.201900043DOI Listing

Publication Analysis

Top Keywords

non-coding transcription
12
pervasive transcription
12
gene expression
8
transcription
8
nucleosome-depleted regions
8
initiation coding
8
coding gene
8
dna replication
8
transcription ndrs
8
regulation gene
4

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

LncRNA DNM1P35 sponges hsa-mir-326 to promote ovarian cancer progression.

Sci Rep

December 2024

Department of Gynaecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University/Wuxi Medical Center, Nanjing Medical University/Wuxi People's Hospital, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.

Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in cancer progression. We found lncRNA DNM1P35 is elevated in ovarian tumors compared to normal tissues, and demonstrated that lncRNA DNM1P35 promoted cancer cell proliferation, migration and invasion in SK-OV-3 and OVCAR-3 cell lines. Furthermore, lncRNA DNM1P35 also facilitated the epithelial-mesenchymal transition (EMT) of ovarian cancer cells.

View Article and Find Full Text PDF

Anti-miR21-conjugated DNA nanohydrogel for enhanced cancer therapy.

Biomater Adv

December 2024

Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:

MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.

View Article and Find Full Text PDF

The genus Flaveria has been studied extensively as a model for the evolution of C photosynthesis. Thus far, molecular analyses in this genus have been limited due to a dearth of genomic information and the lack of a rapid and efficient transformation protocol. Since their development, Agrobacterium-mediated transient transformation protocols have been instrumental in understanding many biological processes in a range of plant species.

View Article and Find Full Text PDF

The duck industry is vital for supplying high-quality protein, making research into the development of duck skeletal muscle critical for improving meat and egg production. In this study, we leveraged Oxford Nanopore Technologies (ONT) sequencing to perform full-length transcriptome sequencing of myoblasts harvested from the leg muscles of duck embryos at embryonic day 13 (E13), specifically examining both the proliferative (GM) and differentiation (DM) phases. Our analysis identified a total of 5797 novel transcripts along with 2332 long non-coding RNAs (lncRNAs), revealing substantial changes in gene expression linked to muscle development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!