Objective: To investigate the effects of sericin extracted from silkworm Bombyx mori cocoon on morphophysiological parameters in mice with obesity induced by high-fat diet.

Methods: Male C57Bl6 mice aged 9 weeks were allocated to one of two groups - Control and Obese, and fed a standard or high-fat diet for 10 weeks, respectively. Mice were then further subdivided into four groups with seven mice each, as follows: Control, Control-Sericin, Obese, and Obese-Sericin. The standard or high fat diet was given for 4 more weeks; sericin (1,000mg/kg body weight) was given orally to mice in the Control-Sericin and Obese-Sericin Groups during this period. Weight gain, food intake, fecal weight, fecal lipid content, gut motility and glucose tolerance were monitored. At the end of experimental period, plasma was collected for biochemical analysis. Samples of white adipose tissue, liver and jejunum were collected and processed for light microscopy analysis; liver fragments were used for lipid content determination.

Results: Obese mice experienced significantly greater weight gain and fat accumulation and had higher total cholesterol and glucose levels compared to controls. Retroperitoneal and periepididymal adipocyte hypertrophy, development of hepatic steatosis, increased cholesterol and triglyceride levels and morphometric changes in the jejunal wall were observed.

Conclusion: Physiological changes induced by obesity were not fully reverted by sericin; however, sericin treatment restored jejunal morphometry and increased lipid excretion in feces in obese mice, suggesting potential anti-obesity effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6905161PMC
http://dx.doi.org/10.31744/einstein_journal/2020AO4876DOI Listing

Publication Analysis

Top Keywords

obese mice
12
sericin treatment
8
mice
8
high-fat diet
8
diet weeks
8
weight gain
8
lipid content
8
sericin
5
obese
5
treatment obesity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!