Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, a fluorometric and colorimetric analysis of alkaline phosphatase (ALP) activity was developed based on nanozymes. The nanozymes were composed of nucleotides (ATP, ADP and AMP) coordinated with copper ions. All three kinds of nanozymes (ATP-Cu, ADP-Cu and AMP-Cu) exhibited polyphenol oxidase (PPO)-mimic activity by catalyzing a chromogenic reaction of 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP). However, there were obvious differences in the PPO-like activity and the fluorescence of the three nanozymes produced from the same concentration of nucleotides (keeping the concentration of Cu unchanged at 5 mM). The catalytic activities of produced ADP-Cu and AMP-Cu were obviously higher than that of ATP-Cu at a certain nucleotide concentration of 3 mM. In addition, when ATP was hydrolyzed into ADP and AMP by ALP, more nanozymes were produced and the catalytic activity of the system was enhanced, which resulted in an obvious increase of the colorimetric signal. The signal intensity was proportional to ALP concentration in the range of 0-30 U L, and the detection limit for ALP was 0.3 U L from the colorimetric detection. Moreover, the fluorescence intensity of the produced nanozymes was also proportional to the ALP concentration in the range of 1-30 U L and the detection limit was 0.45 U L from the fluorescence detection. A fluorometric and colorimetric sensing ALP method was thus established. The method showed a high selectivity for ALP activity compared with proteins, amino acids and other interference components. Furthermore, the proposed method was also used to detect ALP activity in human serum samples, which showed great potential for diagnostic and practical purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9tb01390c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!