As the ability to generate magnetic anisotropy in molecular materials continues to hit new milestones, concerted effort has shifted towards understanding, and potentially controlling, the mechanisms of magnetic relaxation across a large time and temperature space. Slow magnetic relaxation in molecules is highly temperature-, field-, and environment-dependent with the relevant timescale easily traversing ten orders of magnitude for current single-molecule magnets (SMM). The prospect of synthetic control over the nature of (and transition probabilities between) magnetic states make unraveling the underlying mechanisms an important yet daunting challenge. Currently, instrumental considerations dictate that the characteristic relaxation time, τ, is determined by separate methods depending on the timescale of interest. Static and dynamic probe fields are used for long- and short-timescales, respectively. Each method captures a distinct, non-overlapping time range, and experimental differences lead to the possibility of fundamentally different meanings for τ being plotted and fitted globally as a function of temperature. Herein, we present a method to generate long-timescale waveforms with standard vibrating sample magnetometry (VSM) instrumentation, allowing extension of alternating current (AC) susceptometry to SMMs and other superparamagnets with arbitrarily long relaxation time. We fit these data to a generalized Debye model and present a comparison to results obtained from direct current (DC) magnetization decay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp03936h | DOI Listing |
J Clin Med
December 2024
Department of Pediatric Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul 34303, Turkey.
: Cardiac magnetic resonance (CMR) plays a central role in the diagnosis and follow-up of acute myocarditis (AM). In this study, we aimed to evaluate baseline and follow-up CMR findings and associated factors in children with AM. : A retrospective analysis of CMR in pediatric patients with clinical presentations suggestive of myocarditis was performed.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Data Science and Artificial Intelligence, Jilin Engineering Normal University, Changchun 130052, China.
The precise identification of maize kernel varieties is essential for germplasm resource management, genetic diversity conservation, and the optimization of agricultural production. To address the need for rapid and non-destructive variety identification, this study developed a novel interpretable machine learning approach that integrates low-field nuclear magnetic resonance (LF-NMR) with morphological image features through an optimized support vector machine (SVM) framework. First, LF-NMR signals were obtained from eleven maize kernel varieties, and ten key features were extracted from the transverse relaxation decay curves.
View Article and Find Full Text PDFEur J Radiol
January 2025
Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province 214062, China. Electronic address:
Purpose: To construct a nomogram combining Kaiser score (KS), synthetic MRI (syMRI) parameters, apparent diffusion coefficient (ADC), and clinical features to distinguish benign and malignant breast lesions better.
Methods: From December 2022 to February 2024, a retrospective cohort of 168 patients with breast lesions diagnosed as Breast Imaging Reporting and Data System (BI-RADS) category 4 by ultrasound and/or mammography was included. The research population was divided into the training set (n = 117) and the validation set (n = 51) by random sampling with a ratio of 7:3.
Colloids Surf B Biointerfaces
January 2025
Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:
The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!