Photosensitizers (PSs) that are directly responsive to X-ray for radiodynamic therapy (RDT) with desirable imaging abilities have great potential applications in cancer therapy. Herein, the cerium (Ce)-doped NaCeF:Gd,Tb scintillating nanoparticle (ScNP or scintillator) is first reported. Due to the sensitization effect of the Ce ions, Tb ions can emit fluorescence under X-ray irradiation to trigger X-ray excited fluorescence (XEF). Moreover, Ce and Tb ions can absorb the energy of secondary electrons generated by X-ray to produce reactive oxide species (ROS) for RDT. With the intrinsic absorption of X-ray by lanthanide elements, the NaCeF:Gd,Tb ScNPs also act as a computed tomography (CT) imaging contrast agent and radiosensitizers for radiotherapy (RT) sensitization synchronously. Most importantly, the transverse relaxation time of Gd ions is shortened due to the doping of Ce and Tb ions, leading to the excellent performance of our ScNPs in T-weighted MR imaging for the first time. Both and studies verify that our synthesized ScNPs have good performance in XEF, CT, and T-weighted MR imaging, and a synchronous RT/RDT is achieved with significant suppression on tumor progression under X-ray irradiation. Importantly, no systemic toxicity is observed after intravenous injection of ScNPs. Our work highlights that ScNPs have potential in multimodal imaging-guided RT/RDT of deep tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b03682DOI Listing

Publication Analysis

Top Keywords

multimodal imaging-guided
8
x-ray irradiation
8
t-weighted imaging
8
x-ray
7
ions
5
scnps
5
nacefgdtb scintillator
4
scintillator x-ray
4
x-ray responsive
4
responsive photosensitizer
4

Similar Publications

Aim: The lungs represent the second most common site of colorectal cancer metastases. Although surgery is commonly considered the best treatment, many other invasive and noninvasive procedures and treatments have been adopted to improve patient survival and there is no clear evidence in the literature of which is the more effective. The aim of this work was to identify which treatment confers the best gain in overall survival for patients with pulmonary metastases from colorectal cancer.

View Article and Find Full Text PDF

A Spiro-Based NIR-II Photosensitizer with Efficient ROS Generation and Thermal Conversion Performances for Imaging-Guided Tumor Theranostics.

Adv Healthc Mater

January 2025

Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.

Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration.

View Article and Find Full Text PDF

Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.

View Article and Find Full Text PDF

Colon cancer is one kind of malignant digestive tract tumor with high morbidity and mortality worldwide, treatments for which still face great challenges. Recently emerged intervention strategies such as phototherapy and gas therapy have displayed promising effects in the treatment of colon cancer, but their application are still hindered due to insufficient tumor targeting and deeper tissue penetrating capacity. Herein, in the present study, we developed one theranostic nanoplatform Cet-CDs-SNO (CCS) to realize multimodal imaging-guided synergistic colon cancer therapy.

View Article and Find Full Text PDF

Biomimetic Metallacage Nanoparticles with Aggregation-Induced Emission for NIR-II Fluorescence Imaging-Guided Synergistic Immuno-Phototherapy of Tumors.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.

The integration of theranostics, which combines diagnostics with therapeutics, has markedly improved the early detection of diseases, precise medication management, and assessment of treatment outcomes. In the realm of oncology, organoplatinum-based supramolecular coordination complexes (SCCs) that can coload therapeutic agents and imaging molecules have emerged as promising candidates for multimodal theranostics of tumors. To address the challenges of tumor-targeted delivery and multimodal theranostics for SCCs, this study employs a cell membrane cloaking strategy to fabricate biomimetic metallacage nanoparticles (MCNPs) with multimodal imaging capabilities and homologous targeting capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!