Background: Perivascular cells (PVC) and their "progeny," mesenchymal stromal cells (MSC), have high therapeutic potential for ischemic diseases. While hypoxia can increase their angiogenic properties, the other aspect of ischemic conditions-glucose shortage-is deleterious for MSC and limits their therapeutic applicability. Regenerative cells in developing vascular tissues, however, can adapt to varying glucose environment and react in a tissue-protective manner. Placental development and fetal insulin production generate different glucose fluxes in early and late extraembryonic tissues. We hypothesized that FTM HUCPVC, which are isolated from a developing vascular tissue with varying glucose availability react to low-glucose conditions in a pro-angiogenic manner in vitro.

Methods: Xeno-free (Human Platelet Lysate 2.5%) expanded FTM (n = 3) and term (n = 3) HUCPVC lines were cultured in low (2 mM) and regular (4 mM) glucose conditions. After 72 h, the expression (Next Generation Sequencing) and secretion (Proteome Profiler) of angiogenic factors and the functional angiogenic effect (rat aortic ring assay and Matrigel™ plug) of the conditioned media were quantified and statistically compared between all cultures.

Results: Low-glucose conditions had a significant post-transcriptional inductive effect on FTM HUCPVC angiogenic factor secretion, resulting in significantly higher VEGFc and Endothelin 1 release in 3 days compared to term counterparts. Conditioned media from low-glucose FTM HUCPVC cultures had a significantly higher endothelial network enhancing effect compared to all other experimental groups both in vitro aortic ring assay and in subcutan Matrigel™ plugs. Endothelin 1 depletion of the low-glucose FTM HUCPVC conditioned media significantly diminished its angiogenic effect CONCLUSIONS: FTM HUCPVC isolated from an early extraembryonic tissue show significant pro-angiogenic paracrine reaction in low-glucose conditions at least in part through the excess release of Endothelin 1. This can be a substantial advantage in cell therapy applications for ischemic injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10456-019-09682-0DOI Listing

Publication Analysis

Top Keywords

ftm hucpvc
20
low-glucose conditions
12
conditioned media
12
endothelin release
8
perivascular cells
8
developing vascular
8
varying glucose
8
hucpvc isolated
8
aortic ring
8
ring assay
8

Similar Publications

Cell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay.

View Article and Find Full Text PDF

Human umbilical cord perivascular cells prevent chemotherapeutic drug-induced male infertility in a mouse model.

F S Sci

February 2021

CReATe Fertility Centre, Toronto, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada; Department of Physiology University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Canada; Department of Gynecology, Women's College Hospital, Toronto, Canada.

Objective: To study whether intratesticular (IT) administration of 2 sources of human umbilical cord perivascular cells (HUCPVC), rich and potent sources of mesenchymal stromal cells (MSC), before chemotherapy can prevent infertility in a mouse model.

Design: Two control groups of CD1 male mice without busulfan (BUS) administration (untreated and IT media injection groups) were included. Experimental groups included IT administration of media, first trimester (FTM) HUCPVCs or term HUCPVCs (n = 5 each) injected 3 days before BUS treatment (20 mg/kg).

View Article and Find Full Text PDF

Human umbilical cord perivascular cells maintain regenerative traits following exposure to cyclophosphamide.

Cancer Lett

March 2021

CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics & Gynecology, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; Department of Gynecology, Women's College Hospital, Toronto, ON, Canada. Electronic address:

Chemotherapies can cause germ cell depletion and gonadal failure. When injected post-chemotherapy, mesenchymal stromal cells (MSCs) from various sources have been shown to have regenerative effects in rodent models of chemotherapy-induced gonadal injury. Here, we evaluated two properties of a novel source of MSC, first trimester (FTM) human umbilical cord perivascular cells (HUCPVCs) (with increased regenerative potential compared to older sources), that may render them a promising candidate for chemotherapeutic gonadal injury prevention.

View Article and Find Full Text PDF

Background: Perivascular cells (PVC) and their "progeny," mesenchymal stromal cells (MSC), have high therapeutic potential for ischemic diseases. While hypoxia can increase their angiogenic properties, the other aspect of ischemic conditions-glucose shortage-is deleterious for MSC and limits their therapeutic applicability. Regenerative cells in developing vascular tissues, however, can adapt to varying glucose environment and react in a tissue-protective manner.

View Article and Find Full Text PDF

A solution to prevent secondary flow in adherent cell cultures.

Biol Open

July 2019

Create Program Inc., Suite 412, Toronto, Ontario M5G 1N8, Canada.

High quality cell cultures require reliable laboratory practices. Today's small-scale cell culture format is dominated by circular topology vessels, with the inherent disadvantage of secondary flow induced each time the cell cultures are repositioned. The secondary flow generates uneven sedimentation and adherence that negatively impacts cell culture quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!