Biosurfactants are amphiphilic molecules produced by a variety of microorganisms, including bacteria, yeast and filamentous fungi. Unlike chemically synthesized surfactants, biosurfactants present advantages, such as biodegradability, low toxicity, high selectivity and activity under extreme temperature, pH and salinity conditions, as well as a low critical micelle concentration. Moreover, they can be produced from agro-industrial waste and renewable sources. Their structural diversity and functional properties mean that they have potential applications in various industrial processes as wetting agents, dispersants, emulsifiers, foaming agents, food additives and detergents, as well as in the field of environmental biotechnology. However, opportunities for their commercialization have been limited due to the low yields obtained in the fermentation processes involved in their production as well as the use of refined raw materials, which means higher cost in production. In an attempt to solve these limitations on the commercialization of biosurfactants, various research groups have focused on testing the use of inexpensive alternative sources, such as agro-industrial waste, as substrates for the production of different biosurfactants. In addition to enabling the economical production of biosurfactants, the use of such waste aims to reduce the accumulation of compounds that cause environmental damage. This review shows advances in biosurfactant production carried out using different waste materials or by-products from agro-industrial activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-019-2729-3 | DOI Listing |
Food Res Int
February 2025
Department of Food Science, Federal University of Lavras 37200-900 Lavras, MG, Brazil.
Baru (Dipteryx alata Vogel), a fruit native to the Brazilian Cerrado, has gained scientific interest due to its nutritional potential and commercial value. Its edible seed, of high commercial value, represents around 5 % of the fruit. On the other hand, its pulp, a byproduct of the baru processing industry, is normally discarded, generating a huge volume of waste with reported antioxidant properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran.
This study explores the development of a sustainable drug delivery system using cellulose nanoparticles (CNPs) derived from potato pulp for the controlled release of phosphoaminopyrazine (PAP), a promising anticancer agent. CNPs were synthesized via nanoprecipitation, and PAP was loaded through in-situ nanoprecipitation, achieving a high loading efficiency of 79.2 %.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil.
In the context of agribusiness, the agricultural and livestock sectors generate a considerable quantity of waste on a daily basis. Solid-state fermentation (SSF) represents a potential alternative for mitigating the adverse effects of residue accumulation and for producing high-value products such as enzymes. Pleurotus pulmonarius is capable of producing a number of commercial enzymes, including amylases.
View Article and Find Full Text PDFHeliyon
January 2025
VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India.
Microbial fermentation of agro-industrial residues is gaining significant traction as a sustainable and economically viable approach in bioprocessing. This study explored lactic acid production from selected agro-industrial residues: pre-treated sugarcane waste, potato peel waste, or milk processing waste with alfalfa pellets using strains of organic origin. Five homo-fermentative strains (VITJ1, VITJ2, VITJ3, VITJ4, and VITJ5) were assessed for compatibility and formed into 15 consortia.
View Article and Find Full Text PDFCurr Res Microb Sci
December 2024
Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248005, Uttarakhand, India.
The challenges of pollution and agro-industrial waste management have led to the development of bioconversion techniques to transform these wastes into valuable products. This has increased the focus on the sustainable and cost-efficient production of biosurfactants from agro-industrial waste. Hence, the present study investigates the production of sophorolipid biosurfactants using the yeast strain IIPL32 under submerged fermentation, employing sugarcane bagasse hydrolysate-a renewable, low-cost agro-industrial waste as the feedstock.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!