A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heat wave Intensity Duration Frequency Curve: A Multivariate Approach for Hazard and Attribution Analysis. | LitMetric

Atmospheric warming is projected to intensify heat wave events, as quantified by multiple descriptors, including intensity, duration, and frequency. While most studies investigate one feature at a time, heat wave characteristics are often interdependent and ignoring the relationships between them can lead to substantial biases in frequency (hazard) analyses. We propose a multivariate approach to construct heat wave intensity, duration, frequency (HIDF) curves, which enables the concurrent analysis of all heat wave properties. Here we show how HIDF curves can be used in various locations to quantitatively describe the likelihood of heat waves with different intensities and durations. We then employ HIDF curves to attribute changes in heat waves to anthropogenic warming by comparing GCM simulations with and without anthropogenic emissions. For example, in Los Angeles, CA, HIDF analysis shows that we can attribute the 21% increase in the likelihood of a four-day heat wave (temperature > 31 °C) to anthropogenic emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773721PMC
http://dx.doi.org/10.1038/s41598-019-50643-wDOI Listing

Publication Analysis

Top Keywords

heat wave
24
intensity duration
12
duration frequency
12
hidf curves
12
heat
8
wave intensity
8
multivariate approach
8
heat waves
8
anthropogenic emissions
8
wave
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!