The use of anion redox reactions is gaining interest for increasing rechargeable capacities in alkaline ion batteries. Although anion redox coupling of S and (S) through dimerization of S-S in sulfides have been studied and reported, an anion redox process through electron hole formation has not been investigated to the best of our knowledge. Here, we report an O3-NaCrTiS cathode that delivers a high reversible capacity of ~186 mAh g (0.95 Na) based on the cation and anion redox process. Various charge compensation mechanisms of the sulfur anionic redox process in layered NaCrTiS, which occur through the formation of disulfide-like species, the precipitation of elemental sulfur, S-S dimerization, and especially through the formation of electron holes, are investigated. Direct structural evidence for formation of electron holes and (S) species with shortened S-S distances is obtained. These results provide valuable information for the development of materials based on the anionic redox reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773774 | PMC |
http://dx.doi.org/10.1038/s41467-019-12310-6 | DOI Listing |
Biogerontology
December 2024
Postgraduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil.
In cells, the term "cellular aging" represents a collection of biological changes that can precede the proliferative senescence states. Cells more resistant to proliferative senescence, such as the ones found in the basal layer of the epidermis, may also exhibit these aging patterns. Therefore, cellular aging events could be induced by endogenous signals named here as cellular aging triggers (CATs) components.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200082, China.
As emerging contaminants, antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) pose a serious threat to human health and ecological security. Here, a reduced graphene oxide and g-CN co-doped copper ferrite (rGO-CNCF) were synthesized. The composite material was characterized using XRD, FTIR, XPS, SEM-EDS, TEM, and DRS analysis methods, and a visible-light-assisted rGO-CNCF-activated PMS system was constructed for the removal of ARB and ARGs in water.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shenzhen institute of advanced technology Chinese Academy of Sciences, Functional Thin Films Research Centre, 1068 Xueyuan Avenue, Shenzhen University Town, 518000, SHENZHEN, CHINA.
Organics electrode materials offer multi-electron reactivity, flexible structures, and redox reversibility, but encounter poor conductivity and durability in electrolytes. To overcome above barriers, we propose a dual elongation strategy of π-conjugated motifs with active sites, involving extended carbazole and electropolymerized crosslinked polymer, which enhances electronic conductivity by the electronic delocalization of electron-withdrawing conjugated groups, boosts theoretical capacity by increasing redox-active site density, and endows robust electrochemical stability attributed to crosslinked organic structures. As a proof-of-concept, 5,11-dihydridoindolo[3,2-b]carbazole (DHIC) is selected as the model cathode material for a dual-ion battery, with elongated carbazole groups functioning both as redox-active centers and polymerization anchors.
View Article and Find Full Text PDFFEMS Microbiol Lett
December 2024
Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.
Stenotrophomonas maltophilia is an emerging global opportunistic pathogen that causes nosocomial infections. We demonstrated that the superoxide stress-sensing transcriptional regulator SoxR directly modulated the expression of an operon encompassing sodA1 (encoding manganese-containing superoxide dismutase) and fre (encoding putative flavin reductase) by directly binding to the operator site, which was located between the - 35 and -10 motifs of the sodA1 promoter. It is known that upon exposure to the superoxide generators/redox-cycling drugs, the SoxR, which is bound to the operator site, became oxidized.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!