While cracks are usually considered detrimental, crack generation can be harnessed for various applications, for example in ceramic materials, via directing crack propagation and crack opening. Here, we find that electron beam irradiation prompts a crack suppression phenomenon in a copper (Cu) thin film on a polyimide substrate, allowing for the control of crack formation in terms of both location and shape. Under tensile strain, cracks form on the unirradiated region of the Cu film whereas cracks are prevented on the irradiated region. We attribute this to the enhancement of the adhesion at the Cu-polyimide interface by electrons transmitted through the Cu film. Finally, we selectively form conductive regions in a Cu film on a polyimide substrate under tension and fabricate a strain-responsive organic light-emitting device.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773782 | PMC |
http://dx.doi.org/10.1038/s41467-019-12451-8 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Cobalt is recognized as an active catalyst in ethane dehydroaromatization (EDA) reactions due to its efficient ethane cracking capability. In order to optimize cobalt's strong ethane cracking capability, it was loaded onto HZSM-5 zeolite through impregnation. This study was conducted with Co-loaded HZSM-5 catalysts with an incipient wetness impregnation method and witnessed an increase of catalytic activity with a long induction period.
View Article and Find Full Text PDFAdv Mater
December 2024
Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany.
Silicon is a promising negative electrode material for solid-state batteries (SSBs) due to its high specific capacity and ability to prevent lithium dendrite formation. However, SSBs with silicon electrodes currently suffer from poor cycling stability, despite chemical engineering efforts. This study investigates the cycling failure mechanism of composite Si/LiPSCl electrodes by decoupling the effects of interface chemical degradation and mechanical cracking.
View Article and Find Full Text PDFEnviron Int
December 2024
School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China.
Nanomaterials are increasingly being used in road engineering with the development of road construction technology. The smoke suppression performance of asphalt can be substantially improved using organic nano-montmorillonite (OMMT)/styrene-butadiene-styrene (SBS) block modifiers. Pyrolysis gas chromatography-mass spectrometry (PY-GC-MS), fluorescence microscopy (FM), thermogravimetric analysis (TG), and gel permeation chromatography (GPC) were used to explore the characteristics and microscopic mechanisms of flue gas emissions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People's Republic of China.
O3-NaNiFeMnO has attracted much attention as a cathode for sodium-ion batteries, because of its low cost and high sodium-ion storage capacity. However, its slow Na diffusion kinetics and harmful P3-O3' phase transition with severe bulk strain at high voltage leads to poor rate capability and fast capacity fading. Herein, we propose a multivariate doping strategy with Cu, Mg, and Ti ions to solve the above problems of the O3-NaNiFeMnO cathode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!