Typhoid fever, caused primarily by serovar Typhi ( Typhi), is a life-threatening systemic disease responsible for significant morbidity and mortality worldwide. Three to 5% of individuals infected with Typhi become chronic carriers due to bacterial persistence in the gallbladder. We have demonstrated that forms biofilms on gallstones to establish gallbladder carriage. However, an in-depth molecular understanding of chronic carriage in the gallbladder, from the perspective of both the pathogen and host, is poorly defined. To examine the dynamics of the gallbladder in response to infection, we performed transcriptional profiling in the mouse gallbladder at early (7 days) and chronic (21 days) time points. Transcriptome sequencing (RNA-Seq) revealed a shift from a Th1 proinflammatory response at 7 days postinfection (dpi) toward an anti-inflammatory Th2 response by 21 dpi, characterized by increased levels of immunoglobulins and the Th2 master transcriptional regulator, GATA3. Additionally, bioinformatic analysis predicted the upstream regulation of characteristic Th2 markers, including interleukin-4 (IL-4) and Stat6. Immunohistochemistry and fluorescence-activated cell sorter (FACS) analysis confirmed a significant increase in lymphocytes, including T and B cells, at 21 dpi in mice with gallstones. Interestingly, the levels of -specific CD4 T cells were 10-fold higher in the gallbladder of mice with gallstones at 21 dpi. We speculate that the biofilm state allows to resist the initial onslaught of the Th1 inflammatory response, while yet undefined events influence a switch in the host immunity toward a more permissive type 2 response, enabling the establishment of chronic infection. The existence of chronic typhoid carriers has been in the public eye for over 100 years in part because of the publicity around Typhoid Mary. Additionally, it has been known for decades that the gallbladder is the main site of persistence and recently that gallstones play a key role. Despite this, very little is known about the physiological conditions that allow serovar Typhi to persist in the gallbladder. In this study, we analyze the transcriptional profile of the gallbladder in a mouse model of chronic carriage. We found a shift from an early proinflammatory immune response toward a later anti-inflammatory response, which could explain the stalemate that allows persistence. Interestingly, we found a 10-fold increase in the number of -specific T cells in mice with gallstones. This work moves us closer to understanding the mechanistic basis of chronic carriage, with a goal toward eradication of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775463PMC
http://dx.doi.org/10.1128/mBio.02262-19DOI Listing

Publication Analysis

Top Keywords

chronic carriage
12
mice gallstones
12
gallbladder
10
establishment chronic
8
chronic typhoid
8
serovar typhi
8
chronic
7
response
7
carriage
5
gallstones
5

Similar Publications

Plasmid hybrids as vectors for antibiotic resistance in environmental Escherichia coli.

Sci Total Environ

December 2024

CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.

This study investigated the potential role of phages in the dissemination of antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) in Escherichia coli (E. coli). A comprehensive in silico analysis of 18,410 phage sequences retrieved from the National Center for Biotechnology Information database (NCBI) revealed distinct carriage patterns for ARGs and VFGs between lytic, temperate, and chronic phage types.

View Article and Find Full Text PDF

Objective: To evaluate the characteristics of antifungal immunity in patients with bilateral chronic rhinosinusitis with nasal polyps.

Material And Methods: The study included 74 patients with bilateral chronic rhinosinusitis with nasal polyps and a control group consisting of 30 almost healthy individuals. All patients underwent surgery and were divided into two groups: Group I - with liquid secretion (=39), Group II - with thick secretion in the paranasal sinuses (=35).

View Article and Find Full Text PDF

Introduction: Typhoid fever is an infectious disease primarily caused by sv. Typhi ( Typhi), a bacterium that causes as many as 20 million infections and 600,000 deaths annually. Asymptomatic chronic carriers of S.

View Article and Find Full Text PDF

Asymptomatic chronic carriers occur in approximately 5% of humans infected with serovar Typhi (. Typhi) and represent a critical reservoir for bacterial dissemination. While chronic carriage primarily occurs in the gallbladder (GB) through biofilms on gallstones, additional anatomic sites have been suggested that could also harbor .

View Article and Find Full Text PDF

serovar Typhi primarily persists in chronic carriers by forming biofilms on gallstones in the gallbladder. We have developed a gallstone mouse model to study chronic carriage. To better understand the infection timeline and differentiate between mice that have maintained long-term gallbladder carriage from those that have cleared infection, we utilized bioluminescent .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!