Massive, coordinated cellular changes accompany the transition of central nervous system (CNS) progenitors from forebrain neurectodermal cells to specified neuroepithelial cells. We have previously found that MYC regulates the changing ribosomal and proteostatic landscapes in mouse forebrain precursors at embryonic days E8.5 and E10.5 (before and after neural tube closure; NTC) (Chau et al., 2018). Here, we demonstrate parallel coordinated transcriptional changes in metabolic machinery during this same stage of forebrain specification. Progenitors showed striking mitochondrial structural changes transitioning from glycolytic cristae at E8.5, to more traditional mitochondria at E10.5. Accordingly, glucose use shifted in progenitors such that E8.5 progenitors relied on glycolysis, and after NTC increasingly used oxidative phosphorylation. This metabolic shift was matched by changes in surrounding amniotic and cerebrospinal fluid proteomes. Importantly, these mitochondrial morphological shifts depend on MYC downregulation. Together, our findings demonstrate that metabolic shifting accompanies dynamic organelle and proteostatic remodeling of progenitor cells during the earliest stages of forebrain development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826040 | PMC |
http://dx.doi.org/10.1242/dev.182857 | DOI Listing |
EMBO Rep
January 2025
Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Heavy metal contamination and pesticide residues pose significant threats to human health and ecosystems. Despite its broad applications, fluorescence imaging technology often struggles in complex ecological and biological environments due to disadvantages of background autofluorescence and low quantum yield. This study introduced a near-infrared (NIR) multifunctional "off-on-off" isophorone-based fluorescent bio-probe, DHB, characterized by a high fluorescence quantum yield (10.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
Mitochondrial function is modulated by its interaction with the endoplasmic reticulum (ER). Recent research indicates that these contacts are disrupted in familial models of amyotrophic lateral sclerosis (ALS). We report here that this impairment in the crosstalk between mitochondria and the ER impedes the use of glucose-derived pyruvate as mitochondrial fuel, causing a shift to fatty acids to sustain energy production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!