Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Meiotic spindles are positioned perpendicular to the oocyte cortex to facilitate segregation of chromosomes into a large egg and a tiny polar body. In , spindles are initially ellipsoid and parallel to the cortex before shortening to a near-spherical shape with flattened poles and then rotating to the perpendicular orientation by dynein-driven cortical pulling. The mechanistic connection between spindle shape and rotation has remained elusive. Here, we have used three different genetic backgrounds to manipulate spindle shape without eliminating dynein-dependent movement or dynein localization. Ellipsoid spindles with flattened or pointed poles became trapped in either a diagonal or a parallel orientation. Mathematical models that recapitulated the shape dependence of rotation indicated that the lower viscous drag experienced by spherical spindles prevented recapture of the cortex by astral microtubules emanating from the pole pivoting away from the cortex. In addition, maximizing contact between pole dynein and cortical dynein stabilizes flattened poles in a perpendicular orientation, and spindle rigidity prevents spindle bending that can lock both poles at the cortex. Spindle shape can thus promote perpendicular orientation by three distinct mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826043 | PMC |
http://dx.doi.org/10.1242/dev.178863 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!