Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development and testing of a Faraday cup fast-ion loss detector capable of measuring sub 100 keV particles is documented. Such measurement capabilities play an important role in the assessment of particle confinement of nuclear fusion experiments. The detector is manufactured using thin-film deposition techniques, building upon previous work using discrete foils. This new manufacturing method allows the form factor of the sensor to become that of essentially a microchip. Analysis of the diagnostic response is performed using Monte-Carlo particle simulations. These simulations show peaks in the detector response at 40 and 70 keV. The sensor is then tested in a tunable linear accelerator capable of accelerating protons from 20 to 120 keV. The detector response was found to be well matched to simulations. Improvements to the design to facilitate robustness are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5111714 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!