We have designed, constructed, and tested a unique cold finger suitable for angle resolved photoemission spectroscopy. This design is based on in situ helium reliquification and utilizes pulse tube cryocooler. The pulse tube can be removed for baking without breaking Ultra High Vacuum (UHV). This design also allows the use of non-UHV heater that can be replaced without the need to vent the system. The cold finger has minimal vibration, operates over a temperature range of 1.7 K-400 K, and has no measurable residual magnetization. In continuous mode, it can maintain a sample temperature of 2.6 K, while in single shot mode (by pumping on liquid helium), it can reach temperatures down to 1.8 K for a period of several hours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5113722 | DOI Listing |
J Phys Condens Matter
January 2025
AIMR, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8578, JAPAN.
Monolayer atomic thin films of group-V elements have a high potential for application in spintronics and valleytronics because of their unique crystal structure and strong spin-orbit coupling. We fabricated Sb and Bi monolayers on a SiC(0001) substrate by the molecular-beam-epitaxy method and studied the electronic structure by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. The fabricated Sb film shows the (√3×√3)R30º superstructure associated with the formation of ⍺-Sb, and exhibits a semiconducting nature with a band gap of more than 1.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Physics, University of Ulsan, Ulsan, 44610, Republic of Korea.
The anisotropic properties of materials profoundly influence their electronic, magnetic, optical, and mechanical behaviors and are critical for a wide range of applications. In this study, the anisotropic characteristics of Ni-based van der Waals materials, specifically NiTe and its alloy NiTeSe, utilizing a combination of comprehensive scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations, are explored. Unlike 1T-NiTe, which exhibits trigonal in-plane symmetry, the substitution of Te with Se in NiTe (resulting in the NiTeSe alloy) induces a pronounced in-plane anisotropy.
View Article and Find Full Text PDFNano Lett
January 2025
Institut für Festkörperelektronik, Technische Universität Wien, Gußhausstraße 25, 1040 Vienna, Austria.
We synthesized and spectroscopically investigated monolayer (ML) C on the topological insulator (TI) BiTe. This C/BiTe heterostructure is characterized by an excellent translational order in a novel (4 × 4) C superstructure on a (9 × 9) cell of BiTe. Angle-resolved photoemission spectroscopy (ARPES) of C/BiTe reveals that ML C accepts electrons from the TI at room temperature, but no charge transfer occurs at low temperatures.
View Article and Find Full Text PDFAm J Ophthalmol Case Rep
December 2024
Department of Ophthalmology, Ross Eye Institute, University at Buffalo, 1176 Main Street, Buffalo, NY, 14209, United States.
Purpose: We report a single case of ocular decompression retinopathy (ODR) following neodymium-doped yttrium aluminum garnet laser peripheral iridotomy (Nd:YAG LPI) for primary acute angle-closure glaucoma associated with delayed visual recovery secondary to optic nerve head edema and macular thickening.
Observations: A 56-year-old female patient presented to the emergency department with primary acute angle-closure glaucoma. After topical and IV therapy did not improve intraocular pressure (IOP), an Nd:YAG LPI was performed.
ACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Majorana zero modes are predicted to emerge in semiconductor/superconductor interfaces, such as InAs/Al. Majorana modes could be utilized for fault tolerant topological qubits. However, their realization is hindered by materials challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!