We employ reservoir computing for a reconstruction task in coupled chaotic systems, across a range of dynamical relationships including generalized synchronization. For a drive-response setup, a temporal representation of the synchronized state is discussed as an alternative to the known instantaneous form. The reservoir has access to both representations through its fading memory property, each with advantages in different dynamical regimes. We also extract signatures of the maximal conditional Lyapunov exponent in the performance of variations of the reservoir topology. Moreover, the reservoir model reproduces different levels of consistency where there is no synchronization. In a bidirectional coupling setup, high reconstruction accuracy is achieved despite poor observability and independent of generalized synchronization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5120733 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!