Dynamical billiards are paradigmatic examples of chaotic Hamiltonian dynamical systems with widespread applications in physics. We study how well their Lyapunov exponent, characterizing the chaotic dynamics, and its dependence on external parameters can be estimated from phase space volume arguments, with emphasis on billiards with mixed regular and chaotic phase spaces. We show that in the very diverse billiards considered here, the leading contribution to the Lyapunov exponent is inversely proportional to the chaotic phase space volume and subsequently discuss the generality of this relationship. We also extend the well established formalism by Dellago, Posch, and Hoover to calculate the Lyapunov exponents of billiards to include external magnetic fields and provide a software on its implementation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5099446 | DOI Listing |
BMC Sports Sci Med Rehabil
January 2025
Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Science, Enghelab St, Pich-e-Shemiran, Tehran, Iran.
Background: Chronic ankle instability (CAI) is characterized by recurrent sprains and persistent symptoms, which impair postural control. This study evaluates the diagnostic utility of various linear and nonlinear postural stability measures in distinguishing individuals with CAI from healthy controls.
Methods: Postural stability was assessed in 24 participants (12 with CAI and 12 healthy controls) using a force platform under four conditions: hard surface with eyes open, hard surface with eyes closed, soft surface with eyes open, and soft surface with eyes closed.
Hum Mov Sci
January 2025
Department of Sport Sciences, Nottingham Trent University, Nottingham, UK.
Local dynamic stability (LDS) of gait has been used to differentiate between healthy and injured populations, establishing its potential as an indicator of healthy gait and a new objective measure to assess gait function following injury. For LDS to be a reliable assessment tool of healthy gait progression during rehabilitation, it must provide consistent and sensitive inter-session measures. Methodological factors such as trial duration, gait variable, and Lyapunov Exponent (LyE) algorithm can influence LDS estimation and its reliability.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1Faculty of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland.
: External factors can disrupt postural control, but the intricate workings of the postural control system enable an appropriate response. This study seeks to assess how external perturbations affect postural control. : Twenty women participated in study, which consisted four trials involved quiet standing and experiencing induced perturbations by being struck with a boxing bag from the back, right, and left sides, respectively.
View Article and Find Full Text PDFChaos
January 2025
School of Mathematics and Statistics, University College Dublin, Dublin 4 D04 V1W8, Ireland.
Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Electrical Engineering College, Heilongjiang University, Harbin 150080, China.
In recent years, many chaotic image encryption algorithms have been cracked by chosen plaintext attack. Therefore, the method of associating the key with the plaintext to resist the cryptanalysis has received extensive attention from designers. This paper proposes a new method of cryptanalysis for image encryption algorithms with a key associated with plaintext.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!