Balanced chromosome rearrangements are one of the main etiological factors contributing to hypoprolificacy in the domestic pig. Amongst domestic animals, the pig is considered to have the highest prevalence of chromosome rearrangements. To date over 200 unique chromosome rearrangements have been identified. The factors predisposing pigs to chromosome rearrangements, however, remain poorly understood. Nevertheless, here we provide empirical evidence which sustains the notion that there is a non-random distribution of chromosomal rearrangement breakpoints in the pig genome. We sought to establish if there are structural chromosome factors near which rearrangement breakpoints preferentially occur. The distribution of rearrangement breakpoints was analyzed across three level, chromosomes, chromosome arms, and cytogenetic GTG-bands (G-banding using trypsin and giemsa). The frequency of illegitimate exchanges (e.g., reciprocal translocations) between individual chromosomes and chromosome arms appeared to be independent of chromosome length and centromere position. Meanwhile chromosome breakpoints were overrepresented on some specific G-bands, defining chromosome hotspots for ectopic exchanges. Cytogenetic band level factors, such as the length of bands, chromatin density, and presence of fragile sites, were associated with the presence of translocation breakpoints. The characteristics of these bands were largely similar to that of hotspots in the human genome. Therefore, those hotspots are proposed as a starting point for future molecular analyses into the genomic landscape of porcine chromosome rearrangements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826608 | PMC |
http://dx.doi.org/10.3390/genes10100769 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!