Adsorption of interacting self-avoiding trails in two dimensions.

Phys Rev E

School of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia.

Published: August 2019

We investigate the surface adsorption transition of interacting self-avoiding square lattice trails onto a straight boundary line. The character of this adsorption transition depends on the strength of the bulk interaction, which induces a collapse transition of the trails from a swollen to a collapsed phase, separated by a critical state. If the trail is in the critical state, the universality class of the adsorption transition changes; this is known as the special adsorption point. Using flatPERM, a stochastic growth Monte Carlo algorithm, we simulate the adsorption of self-avoiding interacting trails on the square lattice using three different boundary scenarios which differ with respect to the orientation of the boundary and the type of surface interaction. We confirm the expected phase diagram, showing swollen, collapsed, and adsorbed phases in all three scenarios, and confirm universality of the normal adsorption transition at low values of the bulk interaction strength. Intriguingly, we cannot confirm universality of the special adsorption transition. We find different values for the exponents; the most likely explanation is that this is due to the presence of strong corrections to scaling at this point.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.100.022121DOI Listing

Publication Analysis

Top Keywords

adsorption transition
20
adsorption
8
interacting self-avoiding
8
square lattice
8
bulk interaction
8
swollen collapsed
8
critical state
8
special adsorption
8
confirm universality
8
transition
6

Similar Publications

Tailored large-particle quantum dots with high color purity and excellent electroluminescent efficiency.

Sci Bull (Beijing)

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:

High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.

View Article and Find Full Text PDF

Adsorption structures and bonding states of cesium and barium adsorbed on various sites of vermiculite.

Sci Total Environ

January 2025

Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan. Electronic address:

The adsorption reaction on clay minerals is crucial for understanding the environmental behavior of various cations, including cesium (Cs). However, its details remain unclear because of multiple adsorption sites of the clay minerals, a significant difference between concentrations in the atomic-scale experiments and the actual environment, and difficulties of evaluating bonding states of the adsorbed cations. It is expected that systematic experiments at the atomic-scale with a wide concentration range and application of density functional theory (DFT) calculations overcome the problems and bring crucial insights to link laboratory experiment results with environmental sample analysis.

View Article and Find Full Text PDF

Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.

View Article and Find Full Text PDF

Influence of Monomer Size on CO Adsorption and Mechanical Properties in Microporous Cyanate Ester Resins.

Polymers (Basel)

January 2025

Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.

Molecular simulations offer valuable insights into thermosetting polymers' microstructures and interactions with small molecules, aiding in the development of advanced materials. In this study, we design two cyanate resin models featuring monomers of different sizes and employ a previously developed method to generate crosslinked structures. We then analyze their crosslinking processes and physicochemical properties.

View Article and Find Full Text PDF

Sustainable CO Capture: N,S-Codoped Porous Carbons Derived from Petroleum Coke with High Selectivity and Stability.

Molecules

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.

CO capture from the flue gas is a promising approach to mitigate global warming. However, regulating the carbon-based adsorbent in terms of textural and surface modification is still a challenge. To overcome this issue, the present study depicts the development of cost-effective and high-performance CO adsorbents derived from petroleum coke, an industrial by-product, using a two-step process involving thiourea modification and KOH activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!