Design of conditions for self-replication.

Phys Rev E

Physics of Living Systems, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA.

Published: August 2019

A "self-replicator" is usually understood to be an object of definite form that promotes the conversion of materials in its environment into a nearly identical copy of itself. The challenge of engineering novel, micro- or nanoscale self-replicators has attracted keen interest in recent years, both because exponential amplification is an attractive method for generating high yields of specific products and, also, because self-reproducing entities have the potential to be optimized or adapted through rounds of iterative selection. Substantial steps forward have been achieved both in the engineering of particular self-replicating molecules and in the characterization of the physical basis for possible mechanisms of self-replication. At present, however, there is a need for a theoretical treatment of what physical conditions are most conducive to the emergence of novel self-replicating structures from a reservoir of building blocks on a desired time scale. Here we report progress in addressing this need. By analyzing the kinetics of a toy chemical model, we demonstrate that the emergence of self-replication can be controlled by coarse, tunable features of the chemical system, such as the fraction of fast reactions and the width of the rate constant distribution. We also find that the typical mechanism is dominated by the cooperation of multiple interconnected reaction cycles as opposed to a single isolated cycle. The quantitative treatment presented here may prove useful for designing novel self-replicating chemical systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.100.022414DOI Listing

Publication Analysis

Top Keywords

novel self-replicating
8
design conditions
4
conditions self-replication
4
self-replication "self-replicator"
4
"self-replicator" understood
4
understood object
4
object definite
4
definite form
4
form promotes
4
promotes conversion
4

Similar Publications

We introduce a groundbreaking proof-of-concept for a novel glucose monitoring transducing mechanism, marking the first demonstration of a spore-forming microbial whole-cell sensing platform. The approach uses selective and sensitive germination of Bacillus subtilis spores in response to glucose in potassium-rich bodily fluids such as sweat. As the rate of germination and the number of metabolically active germinating cells are directly proportional to glucose concentration, the electrogenic activity of these cells-manifested as electricity-serves as a self-powered transducing signal for glucose detection.

View Article and Find Full Text PDF

Messenger RNA (mRNA) vaccines against COVID-19 have demonstrated high efficacy and rapid deployment capability to target emerging infectious diseases. However, the need for ultra-low temperature storage made the distribution of LNP/mRNA vaccines to regions with limited resources impractical. This study explores the use of lyophilization to enhance the stability of self-replicating mRNA (repRNA) vaccines, allowing for their storage at non-freezing temperatures such as 2-8 °C or room temperature (25 °C).

View Article and Find Full Text PDF

iDNA-ITLM: An interpretable and transferable learning model for identifying DNA methylation.

PLoS One

October 2024

School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China.

In this study, from the perspective of image processing, we propose the iDNA-ITLM model, using a novel data enhance strategy by continuously self-replicating a short DNA sequence into a longer DNA sequence and then embedding it into a high-dimensional matrix to enlarge the receptive field, for identifying DNA methylation sites. Our model consistently outperforms the current state-of-the-art sequence-based DNA methylation site recognition methods when evaluated on 17 benchmark datasets that cover multiple species and include three DNA methylation modifications (4mC, 5hmC, and 6mA). The experimental results demonstrate the robustness and superior performance of our model across these datasets.

View Article and Find Full Text PDF

Relationship between Protein, MicroRNA Expression in Extracellular Vesicles and Rice Seed Vigor.

Int J Mol Sci

September 2024

Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

Plant extracellular vesicles are non-self-replicating particles released by living plant cells and delimited by a lipid bilayer. They contain a large amount of lipids, RNA, and proteins. Seed vigor plays an important role in agricultural production and preservation of germplasm resources.

View Article and Find Full Text PDF

Exploring the potential of extrachromosomal DNA as a novel oncogenic driver.

Sci China Life Sci

January 2025

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.

Extrachromosomal DNA (ecDNA) is a form of circular DNA mostly found in tumor cells. Unlike the typical chromosomal DNA, ecDNA is circular, self-replicating, and carries complete or partial gene fragments. Although ecDNA occurrence remains a rare event in cancer, recent studies have shown that oncogene amplification on ecDNA is widespread throughout many types of cancer, implying that ecDNA plays a central role in accelerating tumor evolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!