Prediction of lung tumor motion using nonlinear autoregressive model with exogenous input.

Phys Med Biol

Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1, Tokiwa-dai, Ube 755-8611, Japan. Department of Pharmacy and Bioengineering, Biomedical Engineering, Chongqing University of Technology, No.69, Hongguang Avenue, Chongqing 400054, People's Republic of China.

Published: October 2019

The present note addresses the development of a lung tumor position predictor to be used in dynamic tumor tracking radiotherapy, abbreviated as DTT-RT. As there exists 50-500 ms positioning lag in the control of the multi-leaf collimator (MLC) of commercial medical linear accelerators, prediction of future lung tumor position with sufficiently long prediction horizon is inevitable for the successful implementation of DTT-RT. The present article proposes a lung tumor position predictor, which is classified as a nonlinear autoregressive model with exogenous input (NARX). The proposed predictor was trained using seven lung tumor motion trajectories of patients who underwent respiratory gated radiotherapy at Yamaguchi University Hospital. We considered three different prediction horizons, 600 ms, 800 ms and 1 s, which were sufficiently long to compensate for the possible positioning control lag of the MLC. A patient-specific model corresponding to an intended prediction horizon was obtained by training it using the selected tumor motion trajectory with the specified horizon. Accordingly, we obtained three NARX predictors for a single patient. We calculated two performance metrics: the RMS prediction errors and the rate of coverage of the entire tumor trajectory defined by the number of samples of the measured tumor position which was inside the 4 mm cube centered at the corresponding predicted tumor position. The latter quantifies the feasibility of the predictors to generate future gating cubes in the implementation of DTT-RT. The [Formula: see text] (mean [Formula: see text] standard deviation) values of the rates of 600 ms, 800 ms and 1 s prediction horizon calculated using the proposed NARX predictors were [Formula: see text]%, [Formula: see text]% and [Formula: see text]%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab49eaDOI Listing

Publication Analysis

Top Keywords

lung tumor
20
tumor position
20
tumor motion
12
prediction horizon
12
[formula text]%
12
tumor
10
nonlinear autoregressive
8
autoregressive model
8
model exogenous
8
exogenous input
8

Similar Publications

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Circulating Tumor DNA Detection for Recurrence Monitoring of Stage I Non-Small Cell Lung Cancer Treated With Microwave Ablation.

Thorac Cancer

January 2025

Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.

Purpose: As microwave ablation continues to be used in patients with inoperable stage I non-small cell lung cancer (NSCLC), it is particularly important to monitor efficacy. Whether plasma ctDNA detection can predict its efficacy should be illustrated.

Methods: We recruited 43 patients with inoperative stage I NSCLC, all of whom underwent biopsy-synchronous microwave ablation (MWA).

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Objective: To investigate the causal influence of gut microbiota on small cell lung cancer (SCLC) progression using Mendelian randomisation (MR), providing insights into the gut-lung axis in lung cancer pathology.

Study Design: Analytical study. Place and Duration of the Study: Department of Radiotherapy, Binhai County People's Hospital, Yancheng, Jiangsu, China, and Department of Paediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China, from January to May 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!