Charged ultrafiltration (UF) membranes can repel electrically charged molecules that are smaller than the size of the membrane pores and display high rejection of solutes, high flux, and low operation pressures compared to uncharged UF, nanofiltration (NF) and reverse osmosis (RO). Here, a charged UF membrane composite (PANI/PVDF) was prepared and regulated via electrochemically reversible control in portions of amine/imine functional groups of PANI. As a result, the permeability and rejection ratios of CR on charged PANI/PVDF, with PVDF as a control, increased from 19.6 to a maximum of 183.3 L m h bar and from 3.4% to 74%, which expands the trade-off confine benefited from surface potential change from -12.21 mV to -25.26 mV, furtherly, the rejection ratio of CR on PANI/PVDF reached up to 93% via the electrochemical regulation. Finally, a fixed-charge model was built that well describes the steric and electric repulsion effects on membrane performance and the important roles of the electrochemically controllable surface charge. Moreover, the contour map of rejection ratios containing the ratio of molecular size vs the average pore size of the membrane (r/R = 0.2-1.0) and the zeta potential (-10 to -60 mV) were taken into account, which can be used to visually understand the rejection performance of membranes. This model is also appropriate for varying molecular sizes and for molecules with different charges. Our work opens a new horizon for the design of electrochemically controllable charged membranes to remove charged compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.124940 | DOI Listing |
Nat Commun
January 2025
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface.
View Article and Find Full Text PDFCardiovasc Revasc Med
January 2025
Department of Cardiovascular disease, Henry Ford, Detroit, MI, USA.
Introduction: Cardiogenic shock (CS) is marked by substantial morbidity and mortality. The two major CS etiologies include heart failure (HF) and acute myocardial infarction (AMI). The utilization trends of mechanical circulatory support (MCS) and their clinical outcomes are not well described.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Department of Biological Sciences, Kent State University, P.O. Box 5190, Kent, OH 44242, USA. Electronic address:
Phosphatidic acid (PA) through its unique negatively charged phosphate headgroup binds to various proteins to modulate multiple cellular events. To perform such diverse signaling functions, the ionization and charge of PA's headgroup relies on the properties of vicinal membrane lipids and changes in cellular conditions. Cholesterol has conspicuous effects on lipid properties and membrane dynamics.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:
It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high T compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR).
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
In the evolving landscape of nanotechnology and pharmaceuticals, lipid nanostructures have emerged as pivotal areas of research due to their unique ability to mimic biological membranes and encapsulate active molecules. These nanostructures offer promising avenues for drug delivery, vaccine development, and diagnostic applications. This comprehensive review explores the complex mechanisms underlying the formation and stability of various lipid nanostructures, including lipid liquid crystalline nanoparticles and solid lipid nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!