Antibacterial, ester-free monomers: Polymerization kinetics, mechanical properties, biocompatibility and anti-biofilm activity.

Acta Biomater

Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA. Electronic address:

Published: December 2019

Objectives: Quaternary ammonium (QA) methacrylate monomers have been extensively investigated and demonstrate excellent antibacterial properties. However, the presence of ester bonds makes them prone to degradation in the oral cavity. In this study, ester-free QA monomers based on meth-acrylamides were synthesized and screened for polymerization kinetics, mechanical properties and antibacterial effects.

Materials And Methods: Tertiary quaternary ammonium acrylamides (AM) and methacrylamides (MAM) with alkyl side chain lengths of 9 and 14 carbons (C9 and C14) were synthesized and incorporated at 10 wt% into experimental composites based on BisGMA:TEGDMA (1:1), camphorquinone/ethyl-4-dimethylaminobenzoate (0.2/0.8 wt%) and 70 wt% barium glass fillers. Analogous methacrylate versions (MA) were used as controls. Degree of conversion (DC) and rate of polymerization (RP) during photoactivation (800 mW/cm) were followed in real-time with near-IR. Flexural Strength (FS) and Modulus (E) were measured on 2 × 2 × 25 mm bars in 3-point bending after 24 h dry storage and 7-day storage in water at 37 °C. Antimicrobial properties and biofilm adhesion (fouling) were evaluated by bioluminescence (Luciferase Assay) and biofilm removal by water spray microjet impingement test, respectively. Cytotoxicity was assessed by MTT assay on dental pulp stem cells (DPSC). Data were analyzed with one-way ANOVA/Tukey's test (α = 0.05).

Results: DC was similar for all groups tested (∼70%). Both MAMs and C14-AM presented significantly lower RP. Under dry conditions, FS (110-120 MPa) and E (8-9 GPa) were similar for all groups. After water storage, all materials presented FS/E similar to the control, except for C14-AM (for FS) and C14-MAM (for E), which were lower. All C14 versions were strongly antibacterial, decreasing the titer counts of biofilm by more than two orders of magnitude in comparison to the control. C9 monomers did not present significant antibacterial nor antifouling properties. And biofilms had approximately equivalent adhesion on the C9 composites as on the control. Cytotoxicity did not show significant differences between the MA and AM versions and the control group.

Conclusions: C14-QA monomers based on methacrylates and meth-acrylamides present strong antibacterial properties, and in general, similar conversion/mechanical properties compared to the methacrylate control.

Statement Of Significance: This work demonstrates the viability of methacrylamides and acrylamides as potential components in dental restorative materials with antimicrobial properties. The use of ester-free polymerizable functionalities has the potential of improving the degradation resistance of these materials long-term. The use of (meth)acrylamides did not interfere with the antimicrobial potential of quaternary ammonium-based materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894497PMC
http://dx.doi.org/10.1016/j.actbio.2019.09.039DOI Listing

Publication Analysis

Top Keywords

ester-free monomers
8
polymerization kinetics
8
kinetics mechanical
8
properties
8
mechanical properties
8
quaternary ammonium
8
antibacterial properties
8
monomers based
8
antimicrobial properties
8
antibacterial
6

Similar Publications

Evaluation of a photo-initiated copper(I)-catalyzed azide-alkyne cycloaddition polymer network with improved water stability and high mechanical performance as an ester-free dental restorative.

Dent Mater

October 2021

Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States; Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, CO, United States. Electronic address:

Objective: The objective is to develop and characterize an ester-free ether-based photo-CuAAC resin with high mechanical performance, low polymerization-induced stress compared with common BisGMA/TEGDMA (70/30) resins, and improved water stability in comparison to previously developed urethane-based photo-CuAAC resins.

Methods: Triphenyl-ethane-centered ether-linked tri-azide monomers were synthesized and co-photopolymerized with ether-linked tri-alkyne monomers under visible light irradiation using a copper(II) pre-catalyst and CQ/EDAB as the initiator. The ether-based CuAAC formulation was investigated for thermo-mechanical properties, polymerization kinetics and shrinkage stress, and flexural properties with respect to a conventional BisGMA/TEGDMA (70/30) dental resin.

View Article and Find Full Text PDF

Vinyl sulfonamide based thermosetting composites via thiol-Michael polymerization.

Dent Mater

February 2020

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States. Electronic address:

Objective: To assess the performance of thiol Michael photocurable composites based on ester-free thiols and vinyl sulfonamides of varying monomer structures and varied filler loadings and to contrast the properties of the prototype composites with conventional BisGMA-TEGDMA methacrylate composite.

Methods: Synthetic divinyl sulfonamides and ester-free tetrafunctional thiol monomers were utilized for thiol-Michael composite development with the incorporation of thiolated microfiller. Polymerization kinetics was investigated using FTIR spectroscopy.

View Article and Find Full Text PDF

Antibacterial, ester-free monomers: Polymerization kinetics, mechanical properties, biocompatibility and anti-biofilm activity.

Acta Biomater

December 2019

Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR 97201, USA. Electronic address:

Objectives: Quaternary ammonium (QA) methacrylate monomers have been extensively investigated and demonstrate excellent antibacterial properties. However, the presence of ester bonds makes them prone to degradation in the oral cavity. In this study, ester-free QA monomers based on meth-acrylamides were synthesized and screened for polymerization kinetics, mechanical properties and antibacterial effects.

View Article and Find Full Text PDF

New Resins for Dental Composites.

J Dent Res

September 2017

1 Biomaterials and Biomechanics, Oregon Health and Science University, Portland, OR, USA.

Restorative composites have evolved significantly since they were first introduced in the early 1960s, with most of the development concentrating on the filler technology. This has led to improved mechanical properties, notably wear resistance, and has expanded the use of composites to larger posterior restorations. On the organic matrix side, concerns over the polymerization stress and the potential damage to the bonded interface have dominated research in the past 20 y, with many "low-shrinkage" composites being launched commercially.

View Article and Find Full Text PDF

Ester-free thiol-ene dental restoratives--Part A: Resin development.

Dent Mater

November 2015

Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, JSC Biotech Building, Boulder, CO 80309, USA. Electronic address:

Objectives: To detail the development of ester-free thiol-ene dental resins with enhanced mechanical performance, limited potential for water uptake/leachables/degradation and low polymerization shrinkage stress.

Methods: Thiol-terminated oligomers were prepared via a thiol-Michael reaction and a bulky tetra-allyl monomer containing urethane linkages was synthesized. The experimental oligomers and/or monomers were photopolymerized using visible light activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!