Background: Bisphenol A (BPA) is an endocrine disruptor that affects fetal growth in experimental studies. Bisphenol F (BPF) and bisphenol S (BPS), which have been substituted for BPA in some consumer products, have also shown endocrine-disrupting effects in experimental models. However, the effects of BPF and BPS on fetal growth in humans are unknown.
Objectives: Our goal was to investigate trimester-specific associations of urinary concentrations of BPA, BPF, and BPS with size at birth.
Methods: The present study included 845 pregnant women from Wuhan, China (2013-2015), who provided one urine sample in each of the first, second, and third trimesters. Linear regressions with generalized estimating equations were applied to estimate trimester-specific associations of urinary bisphenol concentrations with birth weight, birth length, and ponderal index. Linear mixed-effects models were used to identify potential critical windows of susceptibility to bisphenols by comparing the exposure patterns of newborns in the 10th percentile of each birth anthropometric measurement to that of those in the 90th percentile.
Results: Medians (25th-75th percentiles) of urinary concentrations of BPA, BPF, and BPS were 1.40 (0.19-3.85), 0.65 (0.34-1.39), and 0.38 (0.13-1.11) ng/mL, respectively. Urinary BPA concentrations in different trimesters were inversely, but not significantly, associated with birth weight and ponderal index. Urinary concentrations of BPF and BPS during some trimesters were associated with significantly lower birth weight, birth length, or ponderal index, with significant trend -values () across quartiles of BPF and BPS concentrations. The observed associations were unchanged after additionally adjusting for other bisphenols. In addition, newborns in the 10th percentile of each birth anthropometry measure had higher BPF and BPS exposures during pregnancy than newborns in the 90th percentile of each outcome.
Conclusions: Prenatal exposure to BPF and BPS was inversely associated with size at birth in this cohort. Replication in other populations is needed. https://doi.org/10.1289/EHP4664.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867404 | PMC |
http://dx.doi.org/10.1289/EHP4664 | DOI Listing |
Environ Sci Technol
January 2025
School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
As substitutes for bisphenol A (BPA), bisphenol analogs (BPs) have raised concerns due to their frequent environmental detection and unclear safety. Here, the cytotoxicity, endocrine disruption, neurotoxicity, aryl hydrocarbon receptor (AhR) activity, and genotoxicity of nine BPs and BPA were evaluated in three types of cell lines. Over half of the tested BPs exhibited greater cytotoxicity than BPA, with IC50 values showing a linear correlation with Log (R²=0.
View Article and Find Full Text PDFToxicol In Vitro
December 2024
Cumhuriyet University, Faculty of Veterinary Medicine, Department of Pathology, Sivas, Turkey.
Bisphenols can enter the body, where they have potential adverse effects on human health, via different routes such as inhalation, dermally or orally. They are known as endocrine disrupting chemicals that activate signaling pathways by mimicking the estrogen actions. In this study, we aimed to investigate effects of bisphenol A (BPA), and its analogues bisphenol F (BPF) and bisphenol S (BPS) on MCF-10A cells and their impact mechanisms on autophagy, apoptosis and reduced glutathion levels.
View Article and Find Full Text PDFToxicol Res (Camb)
December 2024
Department of Life Science, Chung-Ang University, Heukseok-ro 84, Dongjak-gu, Seoul 06974, South Korea.
Background: Bisphenols are prevalent in food, plastics, consumer goods, and industrial products. Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and bisphenol S (BPS), are known to act as estrogen mimics, leading to reproductive disorders, disruptions in fat metabolism, and abnormalities in brain development.
Objectives: Despite numerous studies exploring the adverse effects of bisphenols both and , the molecular mechanisms by which these compounds affect lung cells remain poorly understood.
Talanta
December 2024
Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China. Electronic address:
Bisphenols, as common industrial raw materials, are widely used in food packaging such as plastics. However, their migration and residue may affect the hormone secretion of the human body and then lead to health problems. Therefore, a low-cost, rapid and simple detection method that can simultaneously detect multiple bisphenols is very necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!