AI Article Synopsis

  • BMSCs have potential for treating oral and maxillofacial defects, but their effectiveness is hindered by low survival and growth rates.
  • The study investigates how miR-31 influences the survival, proliferation, and movement of BMSCs under stress induced by LPS, showing that miR-31 can counteract negative effects and enhance these properties.
  • Specifically, miR-31 promotes BMSC survival and growth by inhibiting caspase activation and activates the CXCR4/Akt pathway, which is crucial for its beneficial effects.

Article Abstract

Although bone mesenchymal stem cells (BMSCs) have been used for the treatment of oral and maxillofacial defects, the survival rate and limited proliferation reduces the therapeutic efficiency of BMSC. The aim of our study is to explore the role of miR-31 in regulating survival, proliferation, and migration of BMSC . LPS was used to induce BMSC damage and then miR-31 was used to incubate with BMSC. Subsequently, BMSC proliferation, survival, and migration were determined via ELISA, qPCR, western blots, and immunofluorescence. The expression of miR-31 was downregulated in response to LPS stress. Interestingly, supplementation of miR-31 could reverse the survival, proliferation and migration of BMSC under LPS. Mechanically, miR-31 treatment inhibited the activation of caspase, and thus promoted BMSC survival. Besides, miR-31 upregulated the genes related to cell proliferation, an effect that was followed by an increase in the levels of migratory factors. Further, we found that miR-31 treatment activated the CXCR4/Akt pathway and blockade of CXCR4/Akt could abolish the beneficial effects of miR-31 on BMSC proliferation, survival, and migration. miR-31 could increase the therapeutic efficiency of BMSC via the CXCR4/Akt pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10799893.2019.1669054DOI Listing

Publication Analysis

Top Keywords

bmsc
9
mir-31
9
bone mesenchymal
8
mesenchymal stem
8
stem cells
8
oral maxillofacial
8
maxillofacial defects
8
therapeutic efficiency
8
efficiency bmsc
8
survival proliferation
8

Similar Publications

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Objectives: Systemic administration of conditioned medium (CM) from stem cells derived from human exfoliated deciduous teeth (SHED-CM) in mouse models of rheumatoid arthritis, osteoporosis, and osteoarthritis suppresses excessive osteoclast activity and restores bone integrity. However, the mechanism through which SHED-CM regulates osteoclastogenesis remains largely unknown. In the present study, we examined the anti-osteoclastogenic mechanism of SHED-CM in vitro.

View Article and Find Full Text PDF

Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.

View Article and Find Full Text PDF

Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.

View Article and Find Full Text PDF

The early treatment of Osteonecrosis of Femoral Head (ONFH) remains a clinical challenge. Conventional Bone Marrow Mesenchymal Stem Cell (BMSC) injection methods often result in unsatisfactory outcomes due to mechanical cell damage, low cell survival and retention rates, inadequate cell matrix accumulation, and poor intercellular interaction. In this study, we employed a novel cell carrier material termed "3D Microscaffold" to deliver BMSCs, addressing these issues and enhancing the therapeutic effects of cell therapy for ONFH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!