Although bone mesenchymal stem cells (BMSCs) have been used for the treatment of oral and maxillofacial defects, the survival rate and limited proliferation reduces the therapeutic efficiency of BMSC. The aim of our study is to explore the role of miR-31 in regulating survival, proliferation, and migration of BMSC . LPS was used to induce BMSC damage and then miR-31 was used to incubate with BMSC. Subsequently, BMSC proliferation, survival, and migration were determined via ELISA, qPCR, western blots, and immunofluorescence. The expression of miR-31 was downregulated in response to LPS stress. Interestingly, supplementation of miR-31 could reverse the survival, proliferation and migration of BMSC under LPS. Mechanically, miR-31 treatment inhibited the activation of caspase, and thus promoted BMSC survival. Besides, miR-31 upregulated the genes related to cell proliferation, an effect that was followed by an increase in the levels of migratory factors. Further, we found that miR-31 treatment activated the CXCR4/Akt pathway and blockade of CXCR4/Akt could abolish the beneficial effects of miR-31 on BMSC proliferation, survival, and migration. miR-31 could increase the therapeutic efficiency of BMSC via the CXCR4/Akt pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10799893.2019.1669054 | DOI Listing |
Stem Cell Res Ther
January 2025
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan. Electronic address:
Objectives: Systemic administration of conditioned medium (CM) from stem cells derived from human exfoliated deciduous teeth (SHED-CM) in mouse models of rheumatoid arthritis, osteoporosis, and osteoarthritis suppresses excessive osteoclast activity and restores bone integrity. However, the mechanism through which SHED-CM regulates osteoclastogenesis remains largely unknown. In the present study, we examined the anti-osteoclastogenic mechanism of SHED-CM in vitro.
View Article and Find Full Text PDFPLoS One
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang, China.
Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China.
Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.
View Article and Find Full Text PDFMater Today Bio
February 2025
Kunming Institute of Zoology, Chinese Academy of Sciences, PR China.
The early treatment of Osteonecrosis of Femoral Head (ONFH) remains a clinical challenge. Conventional Bone Marrow Mesenchymal Stem Cell (BMSC) injection methods often result in unsatisfactory outcomes due to mechanical cell damage, low cell survival and retention rates, inadequate cell matrix accumulation, and poor intercellular interaction. In this study, we employed a novel cell carrier material termed "3D Microscaffold" to deliver BMSCs, addressing these issues and enhancing the therapeutic effects of cell therapy for ONFH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!