Studying the frictional properties of interfaces with dynamic chemical bonds advances understanding of the mechanism underlying rate and state laws, and offers new pathways for the rational control of frictional response. In this work, we revisit the load dependence of interfacial chemical-bond-induced (ICBI) friction experimentally and find that the velocity dependence of friction can be reversed by changing the normal load. We propose a theoretical model, whose analytical solution allows us to interpret the experimental data on timescales and length scales that are relevant to experimental conditions. Our work provides a promising avenue for exploring the dynamics of ICBI friction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.116102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!