In slow collisions of two bare nuclei with the total charge larger than the critical value Z_{cr}≈173, the initially neutral vacuum can spontaneously decay into the charged vacuum and two positrons. The detection of the spontaneous emission of positrons would be direct evidence of this fundamental phenomenon. However, the spontaneously produced particles are indistinguishable from the dynamical background in the positron spectra. We show that the vacuum decay can nevertheless be observed via impact-sensitive measurements of pair-production probabilities. The possibility of such an observation is demonstrated using numerical calculations of pair production in low-energy collisions of heavy nuclei.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.113401 | DOI Listing |
Phys Rev Lett
December 2024
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India.
We consider an analytically tractable model that exhibits the main features of the Page curve characterizing the evolution of entanglement entropy during evaporation of a black hole. Our model is a gas of noninteracting fermions on a lattice that is released from a box into the vacuum. More precisely, our Hamiltonian is a tight-binding model with a defect at the junction between the filled box and the vacuum.
View Article and Find Full Text PDFEur Phys J Spec Top
January 2024
Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748 Germany.
Heliyon
December 2024
Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
Adv Mater
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China. Hefei, Anhui, 230026, China.
Li-rich Mn-based layered oxides (LRMOs) are regarded as the leading cathode materials to overcome the bottleneck of higher energy density. Nevertheless, they encounter significant challenges, including voltage decay, poor cycle stability, and inferior rate performance, primarily due to irreversible oxygen release, transition metal dissolution, and sluggish transport kinetics. Moreover, traditionally single modification strategies do not adequately address these issues.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Instituto de Física Corpuscular, Universitat de València-Consejo Superior de Investigaciones Científicas, Parc Científic, E-46980 Paterna, Valencia, Spain.
We propose multiloop vacuum amplitudes in the loop-tree duality (LTD) as the optimal building blocks for efficiently assembling theoretical predictions at high-energy colliders. This hypothesis is strongly supported by the manifestly causal properties of the LTD representation of a vacuum amplitude. The vacuum amplitude in LTD, acting as a kernel, encodes all the final states contributing to a given scattering or decay process through residues in the on-shell energies of the internal propagators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!