Discovery of Weyl Nodal Lines in a Single-Layer Ferromagnet.

Phys Rev Lett

Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China.

Published: September 2019

Two-dimensional (2D) materials have attracted great attention and spurred rapid development in both fundamental research and device applications. The search for exotic physical properties, such as magnetic and topological order, in 2D materials could enable the realization of novel quantum devices and is therefore at the forefront of materials science. Here, we report the discovery of twofold degenerate Weyl nodal lines in a 2D ferromagnetic material, a single-layer gadolinium-silver compound, based on combined angle-resolved photoemission spectroscopy measurements and theoretical calculations. These Weyl nodal lines are symmetry protected and thus robust against external perturbations. The coexistence of magnetic and topological order in a 2D material is likely to inform ongoing efforts study the rich physics in 2D topological ferromagnets.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.116401DOI Listing

Publication Analysis

Top Keywords

weyl nodal
12
nodal lines
12
magnetic topological
8
topological order
8
discovery weyl
4
lines single-layer
4
single-layer ferromagnet
4
ferromagnet two-dimensional
4
two-dimensional materials
4
materials attracted
4

Similar Publications

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

Correspondence between Euler charges and nodal-line topology in Euler semimetals.

Sci Adv

January 2025

New Cornerstone Science Laboratory, Department of Physics, The University of Hong Kong, Hong Kong 999077, China.

Real multi-bandgap systems have non-abelian topological charges, with Euler semimetals being a prominent example characterized by real triple degeneracies (RTDs) in momentum space. These RTDs serve as "Weyl points" for real topological phases. Despite theoretical interest, experimental observations of RTDs have been lacking, and studies mainly focus on individual RTDs.

View Article and Find Full Text PDF

Floquet analysis on an irradiated nodal surface semimetal with non-symmorphic symmetry.

J Phys Condens Matter

December 2024

AKPC Mahavidyalaya, Bengai, West Bengal 712611, India.

A nodal surface semimetal (NSSM) features symmetry enforced band crossings along a surface within the three-dimensional (3D) Brillouin zone (BZ) and a presence of a nonsymmorphic symmetry there pushes such surfaces to stick to the BZ center or boundaries. The topological robustness of the same does not always come with nonzero Berry fluxes. We consider two such NS, one with zero and another with nonzero topological charges and investigate the effect of light irradiation on them.

View Article and Find Full Text PDF

In this paper, we have performed a crystal structure screening and properties prediction framework within the noncentrosymmetric AMX system, which arises from the intercalation of elements in transition metal dichalcogenides. After rigorous evaluations of thermodynamic and dynamic stability, we have refined our initial structure pool of 504 crystals to a focused set of 48 promising candidates. Analysis of their electronic properties has revealed that 23 of these crystals exhibit semiconducting behavior.

View Article and Find Full Text PDF

Monolayer MXO as potential 2D altermagnets and half-metals: a first principles study.

J Phys Condens Matter

November 2024

Department of Electronic Science and Engineering, Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China.

Realizing novel two-dimensional (2D) magnetic states would accelerate the development of advanced spintronic devices and the understandings of 2D magnetic physics. In this paper, we have examined the magnetic and electronic properties of 20 dynamically stable and exfoliable MXO (M = Ti-Ni; X = S-Te; excluding CoTeO). It has been unveiled that [XO]-and [M]-crystal fields govern the M-3orbital splittings in MXO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!