A tandem enzymatic strategy to enhance the scope of C-alkylation of small molecules via the in situ formation of S-adenosyl methionine (SAM) cofactor analogues is described. A solvent-exposed channel present in the SAM-forming enzyme SalL tolerates 5'-chloro-5'-deoxyadenosine (ClDA) analogues modified at the 2-position of the adenine nucleobase. Coupling SalL-catalyzed cofactor production with C-(m)ethyl transfer to coumarin substrates catalyzed by the methyltransferase (MTase) NovO forms C-(m)ethylated coumarins in superior yield and greater substrate scope relative to that obtained using cofactors lacking nucleobase modifications. Establishing the molecular determinants that influence C-alkylation provides the basis to develop a late-stage enzymatic platform for the preparation of high value small molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201908681 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!