AI Article Synopsis

  • The study investigates how local sequence context around stop codons affects the ability of aminoglycosides, specifically G418, to rescue nonsense mutations in the HERG protein.
  • Using 293 cells, researchers explored various stop codons (TGA and TAA) and their susceptibility to G418 treatment to enhance HERG protein expression.
  • Results indicated that certain mutations showed a better response to G418, with the R1014X‑TGAT mutant demonstrating notable improvement in protein expression and function after drug treatment.

Article Abstract

The importance of the local sequence context in determining how efficiently aminoglycosides rescue nonsense mutations has been established previously in disease models. Different stop codons appear to facilitate the termination process with differing efficiencies. Furthermore, the efficiency with which termination is suppressed may also be influenced by the local sequence context surrounding the stop codon. The strongest bias has usually been identified with the nucleotide base that immediately follows the stop codon in the majority of experiments. However, how the sequence context influences the efficiency of aminoglycosides in rescuing the human ether‑a‑go‑go‑related (HERG) protein in mammalian cells remains to be fully elucidated. Therefore, the present study was devised to examine the susceptibility of different termination codons on the HERG gene and the +4 nucleotide immediately following them to be suppressed by aminoglycosides in 293 cells. The 293 cells were transiently transfected with the wild‑type or mutant genes. The read‑through effect was subsequently examined by adding aminoglycoside G418 into the culture medium, followed by incubation of the cells for 24 h. An immunofluorescence method was then used to observe the protein expression of HERG prior to and following drug treatment. Patch clamping was performed to evaluate the function of the HERG protein. These experiments revealed that stop codons TGA and TAA in the R1014X mutant were more susceptible to treatment with the drug G418. Similar results were observed with the W927X‑TGA and W927X‑TAA mutants. Subsequently, R1014X‑TGAC, R1014X‑TGAG and R1014X‑TGAA mutants were constructed based on the R1014X‑TGAT mutant. The level of red fluorescence was observed prior to and following the administration of G418 using antibodies targeting the N‑ or C‑terminus of the HERG protein. However, the tail current density was found only to increase with the R1014X‑TGAT mutant following G418 treatment. Taken together, the results of the present study suggest that the type of premature stop codon and the context of the nucleotide immediately following at the +4 position, may determine the pharmacological rescue efficiency of the HERG gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844634PMC
http://dx.doi.org/10.3892/ijmm.2019.4360DOI Listing

Publication Analysis

Top Keywords

herg gene
12
sequence context
12
herg protein
12
nonsense mutations
8
local sequence
8
r1014x‑tgat mutant
8
herg
7
g418
5
codons
4
codons nucleotide
4

Similar Publications

AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers.

J Cheminform

December 2024

Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.

Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches.

View Article and Find Full Text PDF

Chelerythrine triggers the prolongation of QT interval and induces cardiotoxicity by promoting the degradation of hERG channels.

J Biol Chem

November 2024

Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Article Synopsis
  • Cardiotoxicity during drug treatment is a significant concern, especially regarding the role of cardiac hERG channels in the heart's action potential repolarization.
  • Chelerythrine shows promise as an anti-cancer agent but its safety profile, particularly concerning cardiac effects, is not well understood.
  • This study finds that Chelerythrine can prolong the QT interval and action potential duration, potentially increasing the risk of cardiac toxicity through enhanced degradation of hERG channels via ubiquitination and lysosomal pathways under hypoxic conditions.
View Article and Find Full Text PDF

Stereoselective block of the hERG potassium channel by the Class Ia antiarrhythmic drug disopyramide.

Cell Mol Life Sci

November 2024

School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.

Article Synopsis
  • Potassium channels from the human hERG gene are affected by various drugs, and this study specifically investigates the effects of chiral disopyramide, a Class Ia antiarrhythmic, on hERG currents in HEK 293 cells.* -
  • The findings show that the S(+) enantiomer of disopyramide is more potent at inhibiting hERG current compared to the R(-) form, with IC values of 3.9 µM and 12.9 µM respectively, and certain mutations in hERG alter these effects.* -
  • Molecular simulations indicate that the S(+) form binds more effectively to specific residues in the hERG channel, while the R(-)
View Article and Find Full Text PDF

Development of an efficient NUPR1 inhibitor with anticancer activity.

Sci Rep

November 2024

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.

Pancreatic cancer is highly lethal and has limited treatment options available. Our team had previously developed ZZW-115, a promising drug candidate that targets the nuclear protein 1 (NUPR1), which is involved in pancreatic cancer development and progression. However, clinical translation of ZZW-115 was hindered due to potential cardiotoxicity caused by its interaction with the human Ether-à-go-go-Related Gene (hERG) potassium channel.

View Article and Find Full Text PDF

hERGBoost: A gradient boosting model for quantitative IC prediction of hERG channel blockers.

Comput Biol Med

January 2025

Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea. Electronic address:

The human ether-a-go-go-related gene (hERG) potassium channel is pivotal in drug discovery due to its susceptibility to blockage by drug candidate molecules, which can cause severe cardiotoxic effects. Consequently, identifying and excluding potential hERG channel blockers at the earliest stages of drug development is crucial. Most traditional machine learning models predict a molecule's cardiotoxicity or non-cardiotoxicity typically at 10 μM, which doesn't account for compounds with low IC values that are non-toxic at therapeutic levels due to their high effectiveness at lower concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!