Titania nanocrystals have been investigated for fast color switching through photocatalytic reduction of dyes and hexacyanometalate pigments. Here we reveal that direct binding of sacrificial electron donors (SEDs) to the surface of titania nanocrystals can significantly promote the charge transfer rate by more efficiently scavenging photogenerated holes and releasing more photogenerated electrons for reduction reactions. Using diethylene glycol (DEG) as an example, we show that its binding to the nanoparticle surface, which can be achieved either during or after the nanoparticle formation, greatly enhances the photocatalytic reduction in comparison with the case where free DEG molecules are simply added as external SEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr05453gDOI Listing

Publication Analysis

Top Keywords

photocatalytic reduction
12
titania nanocrystals
12
sacrificial electron
8
electron donors
8
surface-bound sacrificial
4
donors promoting
4
promoting photocatalytic
4
reduction
4
reduction titania
4
nanocrystals titania
4

Similar Publications

Highly Efficient Photocatalytic HO Production under Ambient Conditions via Defective InS Nanosheets.

Langmuir

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Oxygen and water generating hydrogen peroxide (HO) by optical drive is an extremely promising pathway, and the large amount of oxygen in air and natural sunlight illumination are excellent catalytic conditions. However, the separation efficiency of photogenerated electron-hole pairs greatly limits the photocatalytic efficiency, especially in the absence of sacrificial agents. Here, we report an InS nanosheet with an S vacancy (S-InS).

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are a promising platform for heterogeneous photocatalysis due to their stability and design diversity, but their potential is often restricted by unmanageable targeted excitation and charge transfer. Herein, a bimetallic COF integrating photosensitizers and catalytic sites is designed to facilitate locally ultrafast charge transfer, aiming to improve the photocatalytic reduction of CO. The strategy uses a "one-pot" method to synthesize the bimetallic COF (termed PBCOF) through in situ Schiff-base condensation of Pyrene with MBpy (M = Ru, Re) units.

View Article and Find Full Text PDF

Imine-based covalent organic frameworks (COFs) have been widely applied in photocatalytic hydrogen peroxide (HO) production because of their highly crystalline properties and tunable chemical structures. However, the inherent polarization of C═N linkage brings a high energy barrier for π-electron delocalization, impeding the in-plane photoelectron transfer process, which leads to an inadequate efficiency of HO photosynthesis. In addition, the chemical stability of most imine-COFs remains insufficient due to the reversible nature of imine linkage.

View Article and Find Full Text PDF

Direct Synthesis of Topology-Controlled BODIPY and CO2-Based Zirconium Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction.

Angew Chem Int Ed Engl

January 2025

National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, 117585, Singapore, SINGAPORE.

Boron dipyrromethene (BODIPY)-based zirconium metal-organic frameworks (Zr-MOFs) possess strong light-harvesting capabilities and great potential for artificial photosynthesis without the use of sacrificial reagents. However, their direct preparation has not yet been achieved due to challenges in synthesizing suitable ligands. Herein, we reported the first successful direct synthesis of BODIPY-based Zr-MOFs, utilizing CO₂ as a feedstock.

View Article and Find Full Text PDF

Porous organic polymers have shown great potential in photocatalytic CO2 reduction due to their unique tunable structure favoring gas adsorption and metal sites integration. However, efficient photocatalysis in porous polymers is greatly limited by the low surface reactivity and electron mobility of bulk structure. Herein, we incorporate TiO2 nanoparticles and Ni(II) sites into a layered cationic imidazolium polymer (IP), in which the imidazolium moieties and free anions can stabilize the key intermediates and enhance the reaction kinetics of CO2 reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!