Since the first intercalation of layered silicates by using supercritical CO as a processing medium, considerable efforts have been dedicated to intercalating and exfoliating layered two-dimensional (2D) materials in various supercritical fluids (SCFs) to yield single- and few-layer nanosheets. Here, recent work in this area is highlighted. Motivating factors for enhancing exfoliation efficiency and product quality in SCFs, mechanisms for exfoliation and dispersion in SCFs, as well as general metrics applied to assess quality and processability of exfoliated 2D materials are critically discussed. Further, advances in formation and application of 2D material-based composites with assistance from SCFs are presented. These discussions address chemical transformations accompanying SCF processing such as doping, covalent surface modification, and heterostructure formation. Promising features, challenges, and routes to expanding SCF processing techniques are described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760473PMC
http://dx.doi.org/10.1002/advs.201901084DOI Listing

Publication Analysis

Top Keywords

scf processing
8
supercritical fluid-facilitated
4
fluid-facilitated exfoliation
4
processing
4
exfoliation processing
4
processing materials
4
materials intercalation
4
intercalation layered
4
layered silicates
4
silicates supercritical
4

Similar Publications

The process of establishing relay protection and automation (RPA) settings for electric power systems (EPSs) entails complex calculations of operating modes. Traditionally, these calculations are based on symmetrical components, which require the building of equivalent circuits of various sequences. This approach can lead to errors both when identifying the operating modes and when modeling the RPA devices.

View Article and Find Full Text PDF

As a crucial post-translational modification (PTM), protein ubiquitination mediates the breakdown of particular proteins, which plays a pivotal role in a large number of biological processes including plant growth, development, and stress response. The ubiquitin-proteasome system (UPS) consists of ubiquitin (Ub), ubiquitinase, deubiquitinating enzyme (DUB), and 26S proteasome mediates more than 80% of protein degradation for protein turnover in plants. For the ubiquitinases, including ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3), the FBK (F-box Kelch repeat protein) is an essential component of multi-subunit E3 ligase SCF (Skp1-Cullin 1-F-box) involved in the specific recognition of target proteins in the UPS.

View Article and Find Full Text PDF

This study evaluates the properties of starch/chitosan films (SCF) produced via the casting method, incorporating 40 % (w/w) plasticizers (glycerol and sorbitol) and various concentrations (0, 3, 5, and 10 % (w/w)) of nanoclays (Cloisite 20A, Cloisite 30B, and K-10). The effects of each nanofiller on the films were thoroughly investigated. Films containing nanoclays exhibited reduced water solubility and enhanced thermal stability compared to films without nanofillers.

View Article and Find Full Text PDF

Correlations of the expression of Cx43, SCF, p-cyclin E1 (Ser73), p-cyclin E1 (Thr77) and p-cyclin E1 (Thr395) in colon cancer tissues.

World J Gastrointest Oncol

January 2025

Department of Orthopaedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing 230032, Jiangsu Province, China.

Background: Previous cellular studies have demonstrated that elevated expression of Cx43 promotes the degradation of cyclin E1 and inhibits cell proliferation through ubiquitination. Conversely, reduced expression results in a loss of this capacity to facilitate cyclin E degradation. The ubiquitination and degradation of cyclin E1 may be associated with phosphorylation at specific sites on the protein, with Cx43 potentially enhancing this process by facilitating the phosphorylation of these critical residues

Aim: To investigate the correlation between expression of Cx43, SKP1/Cullin1/F-box (SCF), p-cyclin E1 (ser73, thr77, thr395) and clinicopathological indexes in colon cancer.

View Article and Find Full Text PDF

The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!