The current study aimed to assess the regulatory mechanism of microRNA-150-5p (miR-150-5p) in the pathogenesis of gastric cancer. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to verify the expression of miR-150-5p in gastric cancer tissues and cell lines, which was revealed to be highly expressed in each. In addition, the expression of miR-150-5p was associated with advanced gastric cancer and lymph node metastasis. The current study then hypothesized that SRC kinase signaling inhibitor 1 (SRCIN1) was the target gene of miR-150-5p, a theory that was confirmed via a dual luciferase reporter gene assay. RT-qPCR and western blotting were then performed to verify the expression of SRCIN1 in gastric cancer tissues and cell lines. The results demonstrated that SRCIN1 was lowly expressed in gastric cancer tissues and cells. To assess the effect of miR-150-5p on gastric cancer cells, experiments were conducted with BGC-823 cells transfected with a miR-150-5p inhibitor or a miR-150-5p inhibitor+SRCIN1-small interfering (si)RNA respectively. A cell counting kit-8 assay and flow cytometry were also used to assess cell viability and apoptosis, respectively. Western blotting and RT-qPCR were further used to measure the expression of specific markers of epithelial mesenchymal transition (EMT), including epithelial cell markers (E-cadherin and zona occluding-1) and interstitial cell markers (vimentin, N-cadherin and β-catenin). The results revealed that the miR-150-5p inhibitor attenuated cell viability, induced apoptosis, decreased the expression of interstitial cell markers and increased epithelial cell marker expression. However, all effects of the miR-150-5p inhibitor were reversed following SRCIN1-siRNA treatment. In summary, the current study indicated that the miR-150-5p inhibitor attenuated cell viability, induced apoptosis and inhibited gastric cancer cell EMT by targeting SRCIN1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755470PMC
http://dx.doi.org/10.3892/etm.2019.7828DOI Listing

Publication Analysis

Top Keywords

gastric cancer
32
mir-150-5p inhibitor
16
current study
12
cancer tissues
12
cell viability
12
cell markers
12
cell
11
mir-150-5p
10
src kinase
8
kinase signaling
8

Similar Publications

Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).

View Article and Find Full Text PDF

Chemoprevention Strategies for Precancerous Gastric Lesions Beyond Helicobacter pylori Eradication.

QJM

January 2025

Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing, 100091, People's Republic of China.

Gastric cancer (GC) is a significant global health challenge, particularly in high-incidence regions like East Asia. Despite improvements in screening and treatment, the progressive nature of precancerous lesions-such as atrophic gastritis, intestinal metaplasia, and dysplasia-necessitates effective prevention strategies. This review evaluates the role of chemoprevention in GC, focusing on agents designed to target these precancerous lesions.

View Article and Find Full Text PDF

SLC26A9 promotes the initiation and progression of breast cancer by activating the PI3K/AKT signaling pathway.

Biochim Biophys Acta Mol Cell Res

January 2025

Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China. Electronic address:

SLC26A9 is a member of the Slc26a family of multifunctional anion transporters that function as Cl channels in the stomach. We reported for the first time that SLC26A9 is involved in gastric tumorigenesis. However, the role of SLC26A9 in breast cancer has not yet been investigated.

View Article and Find Full Text PDF

Development of Chimeric Nanobody-Granzyme B Functionalized Ferritin Nanoparticles for Precise Tumor Therapy.

Pharmacol Res

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China. Electronic address:

T-cell lymphomas (TCLs) are heterogeneous malignancies with limited treatment options and poor outcomes. The efficacy of traditional T-cell therapies, including chimeric antigen receptor (CAR) T cells, is often constrained by immunosuppressive factors and the tumor microenvironment. On the other hand, although direct Granzyme B (GrB) administration can effectively induce tumor cell apoptosis, it lacks universal tumor targeting and efficient cellular entry mechanisms.

View Article and Find Full Text PDF

Objective: To investigate the role of long non-coding RNAs (lncRNAs) in the metabolic reprogramming of gastric cancer through their regulation of mesenchymal stem cells (MSCs) and HERPUD1 protein targets, aiming to elucidate mechanisms that could lead to novel therapeutic strategies.

Method: The RNA-seq was performed on BGC and hMSC-BGC cells to perform LncRNA screening. And we employed cell culture techniques using hMSC-BM and BGC823 cells, treated with various genetic interventions including siRNA and overexpression vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!