Recruitment of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Systems.

Front Microbiol

Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.

Published: September 2019

Type VI CRISPR-Cas systems contain a single effector nuclease (Cas13) that exclusively targets single-stranded RNA. It remains unknown how these systems acquire spacers. It has been suggested that type VI systems with adaptation modules can acquire spacers from RNA bacteriophages, but sequence similarities suggest that spacers may provide immunity to DNA phages. We searched databases for Cas13 proteins with linked RTs. We identified two different type VI-A systems with adaptation modules including an RT-Cas1 fusion and Cas2 proteins. Phylogenetic reconstruction analyses revealed that these adaptation modules were recruited by different effector Cas13a proteins, possibly from RT-associated type III-D systems within the bacterial classes Alphaproteobacteria and Clostridia. These type VI-A systems are predicted to acquire spacers from RNA molecules, paving the way for future studies investigating their role in bacterial adaptive immunity and biotechnological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753606PMC
http://dx.doi.org/10.3389/fmicb.2019.02160DOI Listing

Publication Analysis

Top Keywords

type vi-a
12
acquire spacers
12
adaptation modules
12
crispr-cas systems
8
systems adaptation
8
spacers rna
8
vi-a systems
8
systems
7
type
6
recruitment reverse
4

Similar Publications

Adaptive immunity of type VI CRISPR-Cas systems associated with reverse transcriptase-Cas1 fusion proteins.

Nucleic Acids Res

December 2024

Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Bacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/Profesor Albareda 1, 18008 Granada, Spain.

Cas13-containing type VI CRISPR-Cas systems specifically target RNA; however, the mechanism of spacer acquisition remains unclear. We have previously reported the association of reverse transcriptase-Cas1 (RT-Cas1) fusion proteins with certain types of VI-A systems. Here, we show that RT-Cas1 fusion proteins are also recruited by type VI-B systems in bacteria from gut microbiomes, constituting a VI-B1 variant system that includes a CorA-encoding locus in addition to the CRISPR array and the RT-Cas1/Cas2 adaptation module.

View Article and Find Full Text PDF

CRISPR-Cas systems confer adaptive immunity to their prokaryotic hosts through the process of adaptation, where sequences are captured from foreign nucleic acids and integrated as spacers in the CRISPR array, and thereby enable crRNA-guided interference against new threats. While the Cas1-2 integrase is critical for adaptation, it is absent from many CRISPR-Cas loci, rendering the mechanism of spacer acquisition unclear for these systems. Here we show that the RNA-targeting type VI-A CRISPR system of acquires spacers from DNA substrates through the action of a promiscuous Cas1-2 integrase encoded by a co-occurring type II-C system, in a transcription-independent manner.

View Article and Find Full Text PDF

Preclinical models of Parkinson's disease are imperative to gain insight into the neural circuits that contribute to gait dysfunction in advanced stages of the disease. A PTEN-induced putative kinase 1 knockout early-onset model of Parkinson's disease may be a useful rodent model to study the effects of neurotransmitter degeneration caused by a loss of PTEN-induced putative kinase 1 function on brain activity during volitional gait. The goal of this study was to measure changes in neural activity at the cerebellar vermis at 8 months of age.

View Article and Find Full Text PDF

We report high-quality genomes of three strains of pv. (), the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb.

View Article and Find Full Text PDF

Prokaryotic CRISPR-Cas immunity is subverted by anti-CRISPRs (Acrs), which inhibit Cas protein activities when expressed during the phage lytic cycle or from resident prophages or plasmids. Acrs often bind to specific cognate Cas proteins, and hence inhibition is typically limited to a single CRISPR-Cas subtype. Furthermore, although acr genes are frequently organized together in phage-associated gene clusters, how such inhibitors initially evolve has remained unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!