Type VI CRISPR-Cas systems contain a single effector nuclease (Cas13) that exclusively targets single-stranded RNA. It remains unknown how these systems acquire spacers. It has been suggested that type VI systems with adaptation modules can acquire spacers from RNA bacteriophages, but sequence similarities suggest that spacers may provide immunity to DNA phages. We searched databases for Cas13 proteins with linked RTs. We identified two different type VI-A systems with adaptation modules including an RT-Cas1 fusion and Cas2 proteins. Phylogenetic reconstruction analyses revealed that these adaptation modules were recruited by different effector Cas13a proteins, possibly from RT-associated type III-D systems within the bacterial classes Alphaproteobacteria and Clostridia. These type VI-A systems are predicted to acquire spacers from RNA molecules, paving the way for future studies investigating their role in bacterial adaptive immunity and biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753606 | PMC |
http://dx.doi.org/10.3389/fmicb.2019.02160 | DOI Listing |
Nucleic Acids Res
December 2024
Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Bacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/Profesor Albareda 1, 18008 Granada, Spain.
Cas13-containing type VI CRISPR-Cas systems specifically target RNA; however, the mechanism of spacer acquisition remains unclear. We have previously reported the association of reverse transcriptase-Cas1 (RT-Cas1) fusion proteins with certain types of VI-A systems. Here, we show that RT-Cas1 fusion proteins are also recruited by type VI-B systems in bacteria from gut microbiomes, constituting a VI-B1 variant system that includes a CorA-encoding locus in addition to the CRISPR array and the RT-Cas1/Cas2 adaptation module.
View Article and Find Full Text PDFCRISPR-Cas systems confer adaptive immunity to their prokaryotic hosts through the process of adaptation, where sequences are captured from foreign nucleic acids and integrated as spacers in the CRISPR array, and thereby enable crRNA-guided interference against new threats. While the Cas1-2 integrase is critical for adaptation, it is absent from many CRISPR-Cas loci, rendering the mechanism of spacer acquisition unclear for these systems. Here we show that the RNA-targeting type VI-A CRISPR system of acquires spacers from DNA substrates through the action of a promiscuous Cas1-2 integrase encoded by a co-occurring type II-C system, in a transcription-independent manner.
View Article and Find Full Text PDFBrain Commun
October 2024
Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
Preclinical models of Parkinson's disease are imperative to gain insight into the neural circuits that contribute to gait dysfunction in advanced stages of the disease. A PTEN-induced putative kinase 1 knockout early-onset model of Parkinson's disease may be a useful rodent model to study the effects of neurotransmitter degeneration caused by a loss of PTEN-induced putative kinase 1 function on brain activity during volitional gait. The goal of this study was to measure changes in neural activity at the cerebellar vermis at 8 months of age.
View Article and Find Full Text PDFPhytopathology
October 2024
CIRAD, Saint Pierre, Reunion, France;
We report high-quality genomes of three strains of pv. (), the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb.
View Article and Find Full Text PDFNature
October 2024
Department of Microbiology, University of Washington, Seattle, WA, USA.
Prokaryotic CRISPR-Cas immunity is subverted by anti-CRISPRs (Acrs), which inhibit Cas protein activities when expressed during the phage lytic cycle or from resident prophages or plasmids. Acrs often bind to specific cognate Cas proteins, and hence inhibition is typically limited to a single CRISPR-Cas subtype. Furthermore, although acr genes are frequently organized together in phage-associated gene clusters, how such inhibitors initially evolve has remained unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!